Quasi-static Compressive Properties and Behavior of Single-cell Miura Origami Column Fabricated by 3D Printed PLA Material

Author(s):  
Farid Triawan ◽  
Geraldy Cahya Denatra ◽  
Djati Wibowo Djamari

The study of a thin-walled column structure has gained much attention due to its potential in many engineering applications, such as the crash box of a car. A thin-walled square column usually exhibits high initial peak force, which may become very dangerous to the driver or passenger. To address this issue, introducing some shape patterns, e.g., origami folding pattern, to the column may become a solution. The present work investigates the compressive properties and behavior of a square box column structure which adopts the Miura origami folding pattern. Several test pieces of single-cell Miura origami column with varying folding angle and layer height are fabricated by a 3D printer. The filament is made of Polylactic Acid (PLA), which is a brittle material. Then, compression tests are carried out to understand its compressive mechanical properties and behavior. The results show that introducing a Miura origami pattern to form a thin-walled square column can dramatically lower down the initial peak stress by 96.82% and, at the same time, increase its ductility, which eventually improves the energy absorption capacity by 61.68% despite the brittle fracture behavior.

Author(s):  
D. Tankara ◽  
R. Moradi ◽  
Y. Y. Tay ◽  
H. M. Lankarani

Over the past few decades, much research work has been conducted on the development of advance crashworthy structures to increase the energy absorption of mechanical systems. Thin-walled tubes are primarily used as structural reinforcements and as energy absorbing components. The high-energy absorption characteristics of cellular foams have attracted great attention to further enhance this superior capability. In particular, nanotechnology has been utilized in the development of advanced cellular materials for the automotive and aerospace industry. The primary objective of this study is to conduct a parametric study using experimental and finite element methods to examine and quantify the performances of thin-walled tube when filled with carbon nano particulates. To accomplish this study, compression tests are carried out to obtain the load-deflection curves of the nano-foams when subjected to different weight percentages of carbon nano fibers. Next, the specific energy absorbed and the collapse mechanism of nano foam filled thin-walled tubes are analyzed and compared with the empty ones. Finally, an illustrative study on the use of nano foams for vehicular applications is presented by using a vehicle bumper numerical model. The carbon nano foam is installed into the cavity of the bumper model and a full-frontal crash simulation is performed. Overall, this study has shown that the energy absorption capacity of thin-walled structures can be significantly enhanced with the use of carbon nano foams.


2014 ◽  
Vol 566 ◽  
pp. 586-592
Author(s):  
Steeve Chung Kim Yuen ◽  
Gerald Nurick ◽  
Sylvester Piu ◽  
Gadija Ebrahim

This paper presents the results of an investigation into the response of thin-walled square (60x60 mm and 76x76 mm) tubes made from mild steel filled with four different fillers; aluminium foam (Cymat 7%), two types of aluminium honeycomb and polyurethane foam to quasi-static and dynamic axial impact load. The energy absorption characteristics of the foam-filled tubes are compared to that of a hollow tube, through efficiency calculations. The tubular structures are subjected to axial impact load generated by drop masses of 320 kg and 390 kg released from a height ranging between 2.1 m to 4.1 m. Footage from a high speed camera is used to determine the average crush forces exerted by each specimen. The results show that the fillers have insignificant effects on the initial peak forces based on the quasi-static results but increase the overall mean crushed force. The findings also indicate that the fillers affect at times the size of the lobe formed thus compromising the energy absorption capacity of the tube.


2014 ◽  
Vol 606 ◽  
pp. 181-185 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Arun Kumar Kananasan ◽  
Mohd Radzi Mohamed Yunus ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali

An experimental investigation was conducted to compare the crush characteristics and energy absorption capacity of circular and square tubes with located through-hole crush initiator. Circular through-holes were fabricated at three different configurations based on location into steel tubes which had a length of 200 mm. Furthermore, two different side configurations along the tube were considered for introducing the crush initiators. The results found that adding crush initiator onto the tubes were effectively reduced the initial peak force of a thin-walled circular and square tubes under axial quasi-static loading. The peak crush force was reduced within a range 3-10% and 5-16% for circular and square tubes respectively when compared with corresponding tubes without crush initiator. Moreover, the energy absorption capacity of the tubes was independent with the incorporation of through-hole crush initiators. However, the energy absorption of circular and square tubes were slightly decreases when compared with the tubes fabricated four sided crush initiation and tubes without crush initiator. Overall, the effect of location and number of crush initiation proved significantly influences the initial peak forces while maintain the energy absorbed.


2020 ◽  
Vol 64 (2) ◽  
pp. 172-178
Author(s):  
Muhammad Ail Naeem ◽  
András Gábora ◽  
Tamás Mankovits

The important properties of metallic foams such as good energy absorption, recyclability, noise absorption, etc. have put them at the forefront of technological development over recent years, especially for fields where the weight is a major concern. The production however, is a highly stochastic process which leads to their inhomogeneous nature. In this paper closed-cell aluminum foam specimens have been produced by direct foaming technique and investigated mechanically, following the principles of Taguchi Design of Experiments (DOE). The important compressive properties of the produced specimens such as the structural stiffness, yield strength, plateau stress and energy absorption have been measured through uniaxial compression tests and the effect of the manufacturing parameters (the temperature, the mixing speed and the amount of foaming agent added) on the energy absorption capacity of the foam is analyzed. From experiments, it was observed that the temperature is the most dominant control factor for the energy absorption capability of the foam followed by the foaming content and the mixing speed. ANOVA statistical analysis was also performed to determine the statistical significance of these parameters on the response.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 881
Author(s):  
Adrian Dubicki ◽  
Izabela Zglobicka ◽  
Krzysztof J. Kurzydłowski

Numerous engineering applications require lightweight structures with excellent absorption capacity. The problem of obtaining such structures may be solved by nature and especially biological structures with such properties. The paper concerns an attempt to develop a new energy-absorbing material using a biomimetic approach. The lightweight structure investigated here is mimicking geometry of diatom shells, which are known to be optimized by nature in terms of the resistance to mechanical loading. The structures mimicking frustule of diatoms, retaining the similarity with the natural shell, were 3D printed and subjected to compression tests. As required, the bio-inspired structure deformed continuously with the increase in deformation force. Finite element analysis (FEA) was carried out to gain insight into the mechanism of damage of the samples mimicking diatoms shells. The experimental results showed a good agreement with the numerical results. The results are discussed in the context of further investigations which need to be conducted as well as possible applications in the energy absorbing structures.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


2014 ◽  
Vol 599 ◽  
pp. 141-144 ◽  
Author(s):  
M. Afrasiab ◽  
G. Faraji ◽  
V. Tavakkoli ◽  
M.M. Mashhadi ◽  
A.R. Bushroa

2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


Sign in / Sign up

Export Citation Format

Share Document