Sustained depolarization-induced propagation of [Ca2+]i oscillations in cultured DRG neurons: The involvement of extracellular ATP and P2Y receptor activation

2008 ◽  
Vol 1239 ◽  
pp. 12-23 ◽  
Author(s):  
Yan Zeng ◽  
Xiao-hua Lv ◽  
Shao-qun Zeng ◽  
Shun-lian Tian ◽  
Man Li ◽  
...  
2010 ◽  
Vol 78 (8) ◽  
pp. 3609-3615 ◽  
Author(s):  
Susanne Säve ◽  
Katarina Persson

ABSTRACT Extracellular ATP can be released by many cell types under conditions of cellular stress and signals through activation of purinergic receptors. Bladder uroepithelial cells grown in vitro have previously been shown to release ATP in response to stretch. In the present study, we investigated ATP release from uroepithelial cells infected with bacteria and the effect of ATP on the host cell proinflammatory interleukin 8 (IL-8) response. The human kidney epithelial cell line A498 and the human uroepithelial cell line UROtsa were grown in culture and stimulated by the uropathogenic Escherichia coli (UPEC) IA2 strain or the stable ATP analogue ATP-γ-S. ATP and IL-8 levels were measured in cell culture medium with a luciferin-luciferase assay and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that UPEC infection of uroepithelial cells for 1 h significantly increased (P < 0.01) the extracellular ATP levels. ATP-γ-S (10 and 100 μM) stimulated release of IL-8 from UROtsa and A498 cells after 6 and 24 h. Experiments with different purinoceptor agonists suggested that P2Y receptors, and not P2X receptors, were responsible for the ATP-γ-S-induced IL-8 release. The potency profile further suggested involvement of P2Y1, P2Y2, and/or P2Y11 receptors, and reverse transcription-PCR (RT-PCR) studies confirmed that the cells expressed these receptors. The amount of IL-8 released increased 12-fold in UPEC-infected cells, and apyrase, an enzyme that degrades ATP, reduced this increase by approximately 50%. The present study suggests that enhanced ATP release and P2Y receptor activation during urinary tract infection may represent a novel, non-TLR4-mediated mechanism for production of proinflammatory IL-8 in human urinary tract epithelial cells.


2004 ◽  
Vol 380 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Schuichi KOIZUMI ◽  
Kayoko FUJISHITA ◽  
Kaori INOUE ◽  
Yukari SHIGEMOTO-MOGAMI ◽  
Makoto TSUDA ◽  
...  

ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a co-culture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP.


2018 ◽  
Vol 19 (11) ◽  
pp. 3590 ◽  
Author(s):  
Greg Clark ◽  
Stanley Roux

Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.


Glia ◽  
2004 ◽  
Vol 48 (3) ◽  
pp. 217-229 ◽  
Author(s):  
S.O. Suadicani ◽  
C.E. Flores ◽  
M. Urban-Maldonado ◽  
M. Beelitz ◽  
E. Scemes

2005 ◽  
Vol 53 (10) ◽  
pp. 1273-1282 ◽  
Author(s):  
Huai-Zhen Ruan ◽  
Lori A. Birder ◽  
William C. de Groat ◽  
Changfeng Tai ◽  
James Roppolo ◽  
...  

The distribution of P2X and P2Y receptor subtypes in upper lumbosacral cat dorsal root ganglia (DRG) has been investigated using immunohistochemistry. Intensity of immunoreactivity for six P2X receptors (P2X5 receptors were immuno-negative) and the three P2Y receptors examined in cat DRG was in the order of P2Y2 = P2Y4>P2X3>P2X2 = P2X7>P2X6>P2X1 = P2X4>P2Y1. P2X3, P2Y2, and P2Y4 receptor polyclonal antibodies stained 33.8%, 35.3%, and 47.6% of DRG neurons, respectively. Most P2Y2, P2X1, P2X3, P2X4, and P2X6 receptor staining was detected in small- and medium-diameter neurons. However, P2Y4, P2X2, and P2X7 staining was present in large- and small-diameter neurons. Double-labeling immunohistochemistry showed that 90.8%, 32.1%, and 2.4% of P2X3 receptor-positive neurons coexpressed IB4, CGRP, and NF200, respectively; whereas 67.4%, 41.3%, and 39.1% of P2Y4 receptor-positive neurons coexpressed IB4, CGRP, and NF200, respectively. A total of 18.8%, 16.6%, and 63.5% of P2Y2 receptor-positive neurons also stained for IB4, CGRP, and NF200, respectively. Only 30% of DRG neurons in cat were P2X3-immunoreactive compared with 90% in rat and in mouse. A further difference was the low expression of P2Y1 receptors in cat DRG neurons compared with more than 80% of the neurons in rat. Many small-diameter neurons were NF200-positive in cat, again differing from rat and mouse.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lina Wang ◽  
Lei Hu ◽  
Ryszard Grygorczyk ◽  
Xueyong Shen ◽  
Wolfgang Schwarz

Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were exploredin vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca2+]ielevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.


Sign in / Sign up

Export Citation Format

Share Document