scholarly journals Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor

2011 ◽  
Vol 308 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Jennifer L. Halpern ◽  
Amy Kilbarger ◽  
Conor C. Lynch
PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76789 ◽  
Author(s):  
Kinga Majchrzak ◽  
Daniele Lo Re ◽  
Małgorzata Gajewska ◽  
Małgorzata Bulkowska ◽  
Agata Homa ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1738
Author(s):  
Chia-Chu Hsieh ◽  
Szu-Chun Hsu ◽  
Ming Yao ◽  
Dong-Ming Huang

Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs’ CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2342 ◽  
Author(s):  
Lucie Brisson ◽  
Stéphanie Chadet ◽  
Osbaldo Lopez-Charcas ◽  
Bilel Jelassi ◽  
David Ternant ◽  
...  

The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.


2017 ◽  
Vol 38 (3) ◽  
pp. 1561-1568 ◽  
Author(s):  
Xiaoxi Li ◽  
Hong Wang ◽  
Xingxing Du ◽  
Wenna Yu ◽  
Jingwen Jiang ◽  
...  

Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 4055-4063 ◽  
Author(s):  
Christian Ries ◽  
Virginia Egea ◽  
Marisa Karow ◽  
Helmut Kolb ◽  
Marianne Jochum ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) represent promising tools in various clinical applications, including the regeneration of injured tissues by endogenous or transplanted hMSCs. The molecular mechanisms, however, that control hMSC mobilization and homing which require invasion through extracellular matrix (ECM) barriers are almost unknown. We have analyzed bone marrow–derivedhMSCs and detected strong expression and synthesis of matrix metalloproteinase 2 (MMP-2), membrane type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2. The ability of hMSCs to traverse reconstituted human basement membranes was effectively blocked in the presence of synthetic MMP inhibitors. Detailed studies by RNA interference revealed that gene knock-down of MMP-2, MT1-MMP, or TIMP-2 substantially impaired hMSC invasion, whereas silencing of TIMP-1 enhanced cell migration, indicating opposing roles of both TIMPs in this process. Moreover, the inflammatory cytokines TGF-β1, IL-1β, and TNF-α up-regulated MMP-2, MT1-MMP, and/or MMP-9 production in these cells, resulting in a strong stimulation of chemotactic migration through ECM, whereas the chemokine SDF-1α exhibited minor effects on MMP/TIMP expression and cell invasion. Thus, induction of specific MMP activity in hMSCs by inflammatory cytokines promotes directed cell migration across reconstituted basement membranes in vitro providing a potential mechanism in hMSC recruitment and extravasation into injured tissues in vivo.


Sign in / Sign up

Export Citation Format

Share Document