Eco-friendly alkaline lignin/cellulose nanofiber drying system for efficient redispersion behavior

2022 ◽  
pp. 119122
Author(s):  
Jungkyu Kim ◽  
Junsik Bang ◽  
YunJin Kim ◽  
Jong-Chan Kim ◽  
Sung-Wook Hwang ◽  
...  
2019 ◽  
Vol 17 (3) ◽  
Author(s):  
Lamhot P. Manalu

Crop drying is essential for preservation in agricultural applications. It is performed either using fossil fuels in an artificial mechanical drying process or by placing the crop under the open sun. The first method is costly and has a negative impact on the environment, while the second method is totally dependent on the weather. The drying process requires a lot of energy in relation to the amount of water that must be evaporated from the product. It is estimated that 12% of the total energy used by the food industries and agriculture absorbed in this process. Due to the limitation of energy resources, it is important to keep researching and developing of diversification and optimization of energy This study aims to assess the use of energy for cocoa drying using solar energy dryer and bin-type dryer, as well as to determine the drying efficiency of each type of dryer. The results showed that the efficiency of the solar dryer drying system ranges between 36% to 46%, while the tub-type dryers between 21.7% to 33.1%. The specific energy of solar dryer ranged from 6.17-7.87 MJ / kg, while the tub-type dryers 8.58-13.63 MJ / kg. Dryer efficiency is influenced by the level of solar irradiation and the amount of drying load, the higher the irradiation received and more cocoa beans are dried, the drying efficiency is also higher and the specific energy further down.Proses pengeringan memerlukan banyak energi sehubungan dengan banyaknya air yang harus diuapkan dari bahan yang dikeringkan. Pengeringan dapat dilakukan dengan menggunakan pengering mekanis berbahan bakar fosil atau dengan menempatkan produk di bawah matahari terbuka. Metode pertama adalah mahal dan memiliki dampak negatif pada lingkungan, sedangkan metode kedua sangat tergantung pada cuaca. Diperkirakan bahwa 12% dari total energi yang dipergunakan oleh industri pangan dan pertanian diserap untuk proses ini. Mengingat semakin terbatasnya sumber energi bahan bakar minyak maka usaha diversifikasi dan optimasi energi untuk pengeringan perlu terus diteliti dan dikembangkan. Salah satunya adalah pemanfaatan energi surya sebagai sumber energi terbarukan. Penelitian ini bertujuan untuk mengkaji penggunaan energi untuk pengeringan kakao dengan memakai pengering energi surya dan pengering tipe bak, serta untuk mengetahui efisiensi pengeringan dari masing-masing tipe pengering. Hasil kajian menunjukkan bahwa efisiensi total sistem pengeringan alat pengering surya berkisar antara 36% dan 46%, sedangkan pengering tipe bak antara 21.7% dan 33.1%. Kebutuhan energi spesifik alat pengering surya berkisar antara 6.17-7.87 MJ/kg, sedangkan alat pengering tipe bak 8.58-13.63 MJ/kg. Efisiensi alat pengering dipengaruhi oleh tingkat iradiasi surya dan jumlah beban pengeringan, semakin tinggi iradiasi yang diterima pengering serta semakin banyak biji kakao yang dikeringkan, maka efisiensi pengeringan juga semakin tinggi dan kebutuhan energi spesifik semakin turun.Keywords: energy, efficiency, cocoa, solar dryer, bin-type dryer.


2021 ◽  
pp. 118221
Author(s):  
Rakibul Hossain ◽  
Mehdi Tajvidi ◽  
Douglas Bousfield ◽  
Douglas J. Gardner

Nano Energy ◽  
2021 ◽  
pp. 106151
Author(s):  
Tuoyi Su ◽  
Nishuang Liu ◽  
Yihua Gao ◽  
Dandan Lei ◽  
Luoxin Wang ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 482
Author(s):  
Fatiha Berroug ◽  
Yassir Bellaziz ◽  
Naaila Ouazzani ◽  
Fatima Ait Nouh ◽  
Abdessamad Hejjaj ◽  
...  

Morocco is the leading producer of phosphate and its derivatives in the world with a total production of 35 Mt. However, the extraction and the valorization of this mine generate huge quantities of phosphate washing waste clay (PHWWC) that constitute a main environmental and economic concern. To facilitate this waste clay storage and handling, it is necessary to decrease its moisture content that represents 80% of PHWWC. The present paper is devoted to studying the conductive drying of PHWWC. Drying experiments were conducted in a laboratory pilot. Afterwards, the experiment results were implemented in a one-dimensional numerical model of heat and mass transfer in a porous media to identify the drying parameters and performances. It was found that most of the water contained in PHWWC is free water that is removed with a constant drying rate. The volume reduction with a marked cracks phenomenon attained 65% without any significant effect of drying temperature and sample thickness. The effective moisture diffusivity of the PHWWC for a conductive drying process is ranged between 10−9 and 1.1 × 10−8 m2·s−1. The thermal efficiency of the drying system is up to 86%. The results could be used for the purpose of design and scale-up of the industrial dryer based on laboratory-scale experiments.


2021 ◽  
Vol 1109 (1) ◽  
pp. 012057
Author(s):  
A H Atienza ◽  
L A Adorador ◽  
J A Hernandez ◽  
F J Vinagrera
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


Sign in / Sign up

Export Citation Format

Share Document