Performance of a hybrid system sorbent–catalyst–membrane for CO2 capture and H2 production under pre-combustion operating conditions

2014 ◽  
Vol 236 ◽  
pp. 77-85 ◽  
Author(s):  
M. Maroño ◽  
M.M. Barreiro ◽  
Y. Torreiro ◽  
J.M. Sánchez
2021 ◽  
Vol 11 (13) ◽  
pp. 6021
Author(s):  
Shinje Lee ◽  
Hyun Seung Kim ◽  
Junhyung Park ◽  
Boo Min Kang ◽  
Churl-Hee Cho ◽  
...  

Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen, mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study, an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions, including CO2 emission permits and CO2 capture and sale. Of the six scenarios, the process configuration involving CO2 capture and sale is the most economical, with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost, the economic feasibility of the SMR-based H2 production process can be further improved.


2021 ◽  
Vol 11 (10) ◽  
pp. 4713
Author(s):  
Carlos Arnaiz del Pozo ◽  
Schalk Cloete ◽  
Ángel Jiménez Álvaro ◽  
Felix Donat ◽  
Shahriar Amini

The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty, advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR), which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points, with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful, results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points, both in terms of efficiency and CO2 avoidance.


2019 ◽  
Vol 113 ◽  
pp. 02017
Author(s):  
Mariagiovanna Minutillo ◽  
Alessandra Perna ◽  
Alessandro Sorce

This paper focuses on a biofuel-based Multi-Energy System generating electricity, heat and hydrogen. The proposed system, that is conceived as refit option for an existing anaerobic digester plant in which the biomass is converted to biogas, consists of: i) a fuel processing unit, ii) a power production unit based on the SOFC (Solid Oxide Fuel Cell) technology, iii) a hydrogen separation, compression and storage unit. The aim of this study is to define the operating conditions that allow optimizing the plant performances by applying the exergy analysis that is an appropriate technique to assess and rank the irreversibility sources in energy processes. Thus, the exergy analysis has been performed for both the overall plant and main plant components and the main contributors to the overall losses have been evaluated. Moreover, the first principle efficiency and the second principle efficiency have been estimated. Results have highlighted that the fuel processor (the Auto-Thermal Reforming reactor) is the main contributor to the global exergy destruction (9.74% of the input biogas exergy). In terms of overall system performance the plant has an exergetic efficiency of 53.1% (it is equal to 37.7% for the H2 production).


2013 ◽  
Author(s):  
Saeed Danaei Kenarsari ◽  
Yuan Zheng

A lab-scale CO2 capture system is designed, fabricated, and tested for performing CO2 capture via carbonation of very fine calcium oxide (CaO) with particle size in micrometers. This system includes a fixed-bed reactor made of stainless steel (12.7 mm in diameter and 76.2 mm long) packed with calcium oxide particles dispersed in sand particles; heated and maintained at a certain temperature (500–550°C) during each experiment. The pressure along the reactor can be kept constant using a back pressure regulator. The conditions of the tests are relevant to separation of CO2 from combustion/gasification flue gases and in-situ CO2 capture process. The inlet flow, 1% CO2 and 99% N2, goes through the reactor at the flow rate of 150 mL/min (at standard conditions). The CO2 percentage of the outlet gas is monitored and recorded by a portable CO2 analyzer. Using the outlet composition, the conversion of calcium oxide is figured and employed to develop the kinetics model. The results indicate that the rates of carbonation reactions considerably increase with raising the temperature from 500°C to 550°C. The conversion rates of CaO-carbonation are well fitted to a shrinking core model which combines chemical reaction controlled and diffusion controlled models.


2018 ◽  
Vol 230 ◽  
pp. 1660-1672 ◽  
Author(s):  
Tien-Lin Hsieh ◽  
Dikai Xu ◽  
Yitao Zhang ◽  
Sourabh Nadgouda ◽  
Dawei Wang ◽  
...  

Author(s):  
Zhenhe Li ◽  
Yanjun Huang ◽  
Hong Wang

In this article, a novel system configuration with multiple energy sources is proposed for a hybrid truck in order to reduce fuel consumption and overcome the drawbacks of using a single energy source. The energy-saving characteristics of the hybrid system can be displayed after analyzing its system structure and performances. In order to validate the advantages of this presented system, the dynamic models of the system components are established in a MATLAB/Simulink environment, and initial and improved power management strategies with rule-based algorithms are developed. Then, the hybrid system is simulated based on the models and control strategies over the urban dynamometer driving schedule driving cycle. The simulation results show that the fuel consumption employing the initial power management strategy is 12.49 L/100 km, and there is a significant decrease with around 13.6% based on the improved strategy. The results also verify that the better fuel economy can be achieved by the proposed multi-source system compared to the counterparts under the same operating conditions.


2019 ◽  
Vol 7 (20) ◽  
pp. 17186-17197 ◽  
Author(s):  
Zuwei Liao ◽  
Yongxin Hu ◽  
Jingdai Wang ◽  
Yongrong Yang ◽  
Fengqi You

2019 ◽  
Vol 255 ◽  
pp. 113862 ◽  
Author(s):  
Bowen Deng ◽  
Muxing Gao ◽  
Rui Yu ◽  
Xuhui Mao ◽  
Rui Jiang ◽  
...  

Author(s):  
Tae Won Song ◽  
Jeong L. Sohn ◽  
Tong Seop Kim ◽  
Sung Tack Ro

To investigate the possible applications of the SOFC/MGT hybrid system to large electric power generations, a study for the kW-class hybrid power system conducted in our group is extended to the MW-class hybrid system in this study. Because of the matured technology of the gas turbine and commercial availability in the market, it is reasonable to construct a hybrid system with the selection of a gas turbine as an off-the-shelf item. For this purpose, the performance analysis is conducted to find out the optimal power size of the hybrid system based on a commercially available gas turbine. The optimal power size has to be selected by considering specifications of a selected gas turbine which limit the performance of the hybrid system. Also, the cell temperature of the SOFC is another limiting parameter to be considered in the selection of the optimal power size. Because of different system configuration of the hybrid system, the control strategies for the part-load operation of the MW-class hybrid system are quite different from the kW-class case. Also, it is necessary to consider that the control of supplied air to the MW-class gas turbine is typically done by the variable inlet guide vane located in front of the compressor inlet, instead of the control of variable rotational speed of the kW-class micro gas turbine. Performance characteristics at part-load operating conditions with different kinds of control strategies of supplied fuel and air to the hybrid system are investigated in this study.


Sign in / Sign up

Export Citation Format

Share Document