scholarly journals Expression of SARS-COV-2 cell receptor gene ACE2 is associated with immunosuppression and metabolic reprogramming in lung adenocarcinoma based on bioinformatics analyses of gene expression profiles

2021 ◽  
pp. 109370
Author(s):  
Md. Nazim Uddin ◽  
Rehana Akter ◽  
Mengyuan Li ◽  
Zeinab Abdelrahman
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A954-A955
Author(s):  
Jacob Kaufman ◽  
Doug Cress ◽  
Theresa Boyle ◽  
David Carbone ◽  
Neal Ready ◽  
...  

BackgroundLKB1 (STK11) is a commonly disrupted tumor suppressor in NSCLC. Its loss promotes an immune exclusion phenotype with evidence of low expression of interferon stimulated genes (ISG) and decreased microenvironment immune infiltration.1 2 Clinically, LKB1 loss induces primary immunotherapy resistance.3 LKB1 is a master regulator of a complex downstream kinase network and has pleiotropic effects on cell biology. Understanding the heterogeneous phenotypes associated with LKB1 loss and their influence on tumor-immune biology will help define and overcome mechanisms of immunotherapy resistance within this subset of lung cancer.MethodsWe applied multi-omic analyses across multiple lung adenocarcinoma datasets2 4–6 (>1000 tumors) to define transcriptional and genetic features enriched in LKB1-deficient lung cancer. Top scoring phenotypes exhibited heterogeneity across LKB1-loss tumors, and were further interrogated to determine association with increased or decreased markers of immune activity. Further, immune cell-types were estimated by Cibersort to identify effects of LKB1 loss on the immune microenvironment. Key conclusions were confirmed by blinded pathology review.ResultsWe show that LKB1 loss significantly affects differentiation patterns, with enrichment of ASCL1-expressing tumors with putative neuroendocrine differentiation. LKB1-deficient neuroendocrine tumors had lower expression of Interferon Stimulated Genes (ISG), MHC1 and MHC2 components, and immune infiltration compared to LKB1-WT and non-neuroendocrine LKB1-deficient tumors (figure 1).The abundances of 22 immune cell types assessed by Cibersort were compared between LKB1-deficient and LKB1-WT tumors. We observe skewing of immune microenvironmental composition by LKB1 loss, with lower abundance of dendritic cells, monocytes, and macrophages, and increased levels of neutrophils and plasma cells (table 1). These trends were most pronounced among tumors with neuroendocrine differentiation, and were concordant across three independent datasets. In a confirmatory subset of 20 tumors, plasma cell abundance was assessed by a blinded pathologist. Pathologist assessment was 100% concordant with Cibersort prediction, and association with LKB1 loss was confirmed (P=0.001).Abstract 909 Figure 1Immune-associated Gene Expression Profiles Affected by Neuroendocrine Differentiation within LKB1-Deficient Lung Adenocarcinomas. Gene expression profiles corresponding to five immune-associated phenotypes are shown with bars indicating average GEP scores for tumors grouped according to LKB1 and neuroendocrine status as indicated. P-values represent results from Student’s T-test between groups as indicated.Abstract 909 Table 1LKB1 Loss Affects Composition of Immune Microenvironment. Values indicate log10 P-values comparing LKB1-loss to LKB1-WT tumors. Positive (red) indicates increased abundance in LKB1 loss. Negative (blue) indicates decreased abundance.ConclusionsWe conclude that tumor differentiation patterns strongly influence the immune microenvironment and immune exclusion characteristics of LKB1-deficient tumors. Neuroendocrine differentiation is associated with the strongest immune exclusion characteristics and should be evaluated clinically for evidence of immunotherapy resistance. A novel observation of increased plasma cell abundance is observed across multiple datasets and confirmed by pathology. Causal mechanisms linking differentiation status to immune activity is not well understood, and the functional role of plasma cells in the immune biology of LKB1-deficient tumors is undefined. These questions warrant further study to inform precision immuno-oncology treatments for these patients.AcknowledgementsThis work was funded by SITC AZ Immunotherapy in Lung Cancer grant (SPS256666) and DOD Lung Cancer Research Program Concept Award (LC180633).ReferencesSkoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77.Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35:3209–16.Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery 2018;8:822-835.Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543–50.Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009;28:2773–83.Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822–7.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20202793
Author(s):  
Alexander Yermanos ◽  
Daniel Neumeier ◽  
Ioana Sandu ◽  
Mariana Borsa ◽  
Ann Cathrin Waindok ◽  
...  

Neuroinflammation plays a crucial role during ageing and various neurological conditions, including Alzheimer's disease, multiple sclerosis and infection. Technical limitations, however, have prevented an integrative analysis of how lymphocyte immune receptor repertoires and their accompanying transcriptional states change with age in the central nervous system. Here, we leveraged single-cell sequencing to simultaneously profile B cell receptor and T cell receptor repertoires and accompanying gene expression profiles in young and old mouse brains. We observed the presence of clonally expanded B and T cells in the central nervous system of aged male mice. Furthermore, many of these B cells were of the IgM and IgD isotypes, and had low levels of somatic hypermutation. Integrating gene expression information additionally revealed distinct transcriptional profiles of these clonally expanded lymphocytes. Our findings implicate that clonally related T and B cells in the CNS of elderly mice may contribute to neuroinflammation accompanying homeostatic ageing.


2004 ◽  
Vol 77 (4) ◽  
pp. 580-586 ◽  
Author(s):  
Rachel A. DeFina ◽  
Yurong Liang ◽  
Hongzhen He ◽  
Kathleen J. Haley ◽  
Kenneth Christopher ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chenlei Zheng ◽  
Cheng Wang ◽  
Tan Zhang ◽  
Ding Li ◽  
Xiao-feng Ni ◽  
...  

Objective. Posttransplantation diabetes mellitus (PTDM) is a known complication of transplantation that affects the prognosis. Tacrolimus (Tac or FK506) is a widely used immunosuppressant that has been reported to be a risk factor for PTDM and to further induce complications in heart and skeletal muscles, but the mechanism is still largely unknown. In our preliminary experiments, we found that after Tac treatment, blood glucose increased, and the weight of skeletal muscle declined. Here, we hypothesize that tacrolimus can induce PTDM and influence the atrophy of skeletal muscle. Methods. We designed preliminary experiments to establish a tacrolimus-induced PTDM model. Gene expression profiles in quadriceps muscle from this rat model were characterized by oligonucleotide microarrays. Then, differences in gene expression profiles in muscle from PTDM rats that received tacrolimus and control subjects were analyzed by using GeneSpring GX 11.0 software (Agilent). Functional annotation and enrichment analysis of differentially expressed genes (DEGs) helped us identify clues for the side effects of tacrolimus. Results. Our experiments found that the quadriceps in tacrolimus-induced PTDM group were smaller than those in the control group. The study identified 275 DEGs that may be responsible for insulin resistance and the progression of PTDM, including 86 upregulated genes and 199 downregulated genes. GO and KEGG functional analysis of the DEGs showed a significant correlation between PTDM and muscle development. PPI network analysis screened eight hub genes and found that they were related to troponin and tropomyosin. Conclusions. This study explored the molecular mechanism of muscle atrophy in a tacrolimus-induced PTDM model by bioinformatics analyses. We identified 275 DEGs and identified significant biomarkers for predicting the development and progression of tacrolimus-induced PTDM.


2019 ◽  
Vol 48 (3) ◽  
pp. 030006051989383 ◽  
Author(s):  
Xing Wu ◽  
Linlin Wang ◽  
Fan Feng ◽  
Suyan Tian

Objective To construct a diagnostic signature to distinguish lung adenocarcinoma from lung squamous cell carcinoma and a prognostic signature to predict the risk of death for patients with nonsmall-cell lung cancer, with satisfactory predictive performances, good stabilities, small sizes and meaningful biological implications. Methods Pathway-based feature selection methods utilize pathway information as a priori to provide insightful clues on potential biomarkers from the biological perspective, and such incorporation may be realized by adding weights to test statistics or gene expression values. In this study, weighted gene expression profiles were generated using the GeneRank method and then the LASSO method was used to identify discriminative and prognostic genes. Results The five-gene diagnostic signature including keratin 5 ( KRT5), mucin 1 ( MUC1), triggering receptor expressed on myeloid cells 1 ( TREM1), complement C3 ( C3) and transmembrane serine protease 2 ( TMPRSS2) achieved a predictive error of 12.8% and a Generalized Brier Score of 0.108, while the five-gene prognostic signature including alcohol dehydrogenase 1C (class I), gamma polypeptide ( ADH1C), alpha-2-glycoprotein 1, zinc-binding ( AZGP1), clusterin ( CLU), cyclin dependent kinase 1 ( CDK1) and paternally expressed 10 ( PEG10) obtained a log-rank P-value of 0.03 and a C-index of 0.622 on the test set. Conclusions Besides good predictive capacity, model parsimony and stability, the identified diagnostic and prognostic genes were highly relevant to lung cancer. A large-sized prospective study to explore the utilization of these genes in a clinical setting is warranted.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 404 ◽  
Author(s):  
Claudia Cava ◽  
Gloria Bertoli ◽  
Isabella Castiglioni

Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated in silico the basic mechanism of ACE2 in the lung and provided evidences for new potentially effective drugs for Covid-19. Specifically, we used the gene expression profiles from public datasets including The Cancer Genome Atlas, Gene Expression Omnibus and Genotype-Tissue Expression, Gene Ontology and pathway enrichment analysis to investigate the main functions of ACE2-correlated genes. We constructed a protein-protein interaction network containing the genes co-expressed with ACE2. Finally, we focused on the genes in the network that are already associated with known drugs and evaluated their role for a potential treatment of Covid-19. Our results demonstrate that the genes correlated with ACE2 are mainly enriched in the sterol biosynthetic process, Aryldialkylphosphatase activity, adenosylhomocysteinase activity, trialkylsulfonium hydrolase activity, acetate-CoA and CoA ligase activity. We identified a network of 193 genes, 222 interactions and 36 potential drugs that could have a crucial role. Among possible interesting drugs for Covid-19 treatment, we found Nimesulide, Fluticasone Propionate, Thiabendazole, Photofrin, Didanosine and Flutamide.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1367-1367
Author(s):  
Christine Gilling ◽  
Amit Mittal ◽  
Vincent Nganga ◽  
Vicky Palmer ◽  
Dennis D. Weisenburger ◽  
...  

Abstract Abstract 1367 Previously, we have shown that gene expression profiles (GEP) of CLL cells from lymph nodes (LN), bone marrow (BM), and peripheral blood (PB) are significantly different from each other. Among the major pathways associated with differential gene expression, a “tolerogenic signature” involved in host immune tolerance is significant in regulating CLL progression. The genes associated with the tolerogenic signature are significantly differentially expressed in patient LN-CLL compared to BM-CLL and PB-CLL, suggesting that LN-CLL cells induce this immune tolerance. From 83 differentially expressed genes identified by GEP that are associated with immune dysregulation, we selected eleven genes (CAV1, PTPN6, PKCb, ZWINT, IL2Ra, CBLC, CDC42, ZNF175, ZNF264, IL10, and HLA-G) for validation studies to determine whether these genes are also dysregulated in the Emu-TCL1 mouse model of CLL. The results demonstrate a trend of upregulation of these genes as determined by qRT-PCR in the LN-tumor microenvironment. To further evaluate the kinetics of selected gene expression during tumor progression, we determined the expression levels of Cav1, Ptpn6, and Pkcb at 12, 24, and 36 weeks of CLL development in the Em-TCL1 mouse model. We found that the expression of all three genes increased as a function of age, indicating a correlation of gene expression with disease progression. In addition, as CLL progressed in these mice there was a marked decrease in CD4+ and CD8+ T cells. The murine data were further validated using CLL cells from the same patients with indolent versus aggressive disease indicating a similar trend in expression as CLL progressed (n=4). Furthermore, patient data analyzed by Kaplan Meier analyses of the expression levels of the selected genes indicated a significant association between down-regulation of PTPN6 (p=0.031) and up-regulation of ZWINT (p<0.001) with clinical outcome as determined by a shorter time to treatment (p<0.05). Functional analysis by knockdown of CAV1 and PKCb in primary patient CLL cells determined by MTT assay showed a decrease in proliferation following knockdown of these genes (p<0.005). Protein-interaction modeling revealed regulation of CAV1 and PTPN6 by one another. Additionally, the PTPN6 protein regulates B cell receptor (BCR) signaling and subsequently the BCR regulates PKCb. Therefore, these data from both mice and humans with CLL, argue that an aggressive disease phenotype is paralleled by expression of genes associated with immune suppression. In particular, evidence presented here suggests, dysregulation of CAV1, PTPN6, ZWINT, and PKCb expression promotes CLL progression. Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 19 (12) ◽  
pp. 2297-2301 ◽  
Author(s):  
Wayne R. Hein ◽  
Lisbeth Dudler ◽  
Marie-FranÇOise Beya ◽  
Anne Marcuz ◽  
Dario Grossberger

Sign in / Sign up

Export Citation Format

Share Document