Computational study of synergistic effects of electron withdrawing groups as catalysts for fullerene formation

2018 ◽  
Vol 17-18 ◽  
pp. 415-418
Author(s):  
Chris Pregot ◽  
Timothy J. Fuhrer
Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4175 ◽  
Author(s):  
Acharya Balkrishna ◽  
Subarna Pokhrel ◽  
Meenu Tomer ◽  
Sudeep Verma ◽  
Ajay Kumar ◽  
...  

Alzheimer’s disease (AD), a neurodegenerative disease, is the most common form of dementia. Inhibition of acetylcholinesterase (AChE) is a common strategy for the treatment of AD. In this study, aqueous, hydro-methanolic, and methanolic extracts of five potent herbal extracts were tested for their in vitro anti-AChE activity. Among all, the Tinospora cordifolia (Giloy) methanolic fraction performed better with an IC50 of 202.64 µg/mL. Of the HPLC analyzed components of T. cordifolia (methanolic extract), palmatine and berberine performed better (IC50 0.66 and 0.94 µg/mL, respectively) as compared to gallic acid and the tool compound “galantamine hydrobromide” (IC50 7.89 and 1.45 µg/mL, respectively). Mode of inhibition of palmatine and berberine was non-competitive, while the mode was competitive for the tool compound. Combinations of individual alkaloids palmatine and berberine resulted in a synergistic effect for AChE inhibition. Therefore, the AChE inhibition by the methanolic extract of T. cordifolia was probably due to the synergism of the isoquinoline alkaloids. Upon molecular docking, it was observed that palmatine and berberine preferred the peripheral anionic site (PAS) of AChE, with π-interactions to PAS residue Trp286, indicating that it may hinder the substrate binding by partially blocking the entrance of the gorge of the active site or the product release.


Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


2010 ◽  
Vol 48 (01) ◽  
Author(s):  
E Gäbele ◽  
K Dostert ◽  
C Dorn ◽  
C Hellerbrand

Sign in / Sign up

Export Citation Format

Share Document