High performance stainless-steel supported Pd membranes with a finger-like and gap structure and its application in NH3 decomposition membrane reactor

2020 ◽  
Vol 388 ◽  
pp. 124245 ◽  
Author(s):  
Jinxia Liu ◽  
Xiaohua Ju ◽  
Chunhua Tang ◽  
Lin Liu ◽  
Hui Li ◽  
...  
Alloy Digest ◽  
2016 ◽  
Vol 65 (2) ◽  

Abstract Outokumpu Type 630 is a martensitic age hardenable alloy of composition 17Cr-4Ni. The alloy has high strength and corrosion resistance similar to that of Type 304 stainless steel. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1238. Producer or source: Outokumpu High Performance Stainless.


2017 ◽  
Vol 1 (11) ◽  
pp. 2376-2382 ◽  
Author(s):  
Anirudh Balram ◽  
Hanfei Zhang ◽  
Sunand Santhanagopalan

This work reports inexpensive stainless steel support enhanced activity of α-Ni(OH)2 for high performance OER catalysis.


2022 ◽  
pp. 136943322110651
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain [Formula: see text] curves, load-lateral deflection [Formula: see text] curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 802
Author(s):  
Chang Sun ◽  
Yingxin Mu ◽  
Yuxin Wang

Electrochemical ammonia synthesis, which is an alternative approach to the Haber–Bosch process, has attracted the attention of researchers because of its advantages including mild working conditions, environmental protection, and simple process. However, the biggest problem in this field is the lack of high-performance catalysts. Here, we report high-efficiency electroreduction of N2 to NH3 on γ-MnO2-supported Pd nanoparticles (Pd/γ-MnO2) under ambient conditions, which exhibits excellent catalytic activity with an NH3 yield rate of 19.72 μg·mg−1Pd h−1 and a Faradaic efficiency of 8.4% at −0.05 V vs. the reversible hydrogen electrode (RHE). X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization shows that Pd nanoparticles are homogeneously dispersed on the γ-MnO2. Pd/γ-MnO2 outperforms other catalysts including Pd/C and γ-MnO2 because of its synergistic catalytic effect between Pd and Mn.


2019 ◽  
Vol 22 ◽  
pp. 118-139
Author(s):  
Faisal Aldhabib ◽  
Xiao Dong Sun ◽  
Abdullah Alsumait ◽  
Fahad Alzubi ◽  
Elias Ashe ◽  
...  

15-5PH stainless steel is widely used in the aerospace industry, from precision fuse pins to forged products, due to its various high-performance properties. However, there is little systematic evaluation of heat treatment responses, especially at ultra-high temperatures above 650°C (1200°F). The objective of this work was to evaluate the mechanical and microstructural properties of 15-5 PH stainless steel at various heat treatments. Multiple heat treatment parameters were tested. The samples tested had varied chemical compositions because they were from different vendors. The experimental work included multiple aging temperatures, time, heating rates, and the effects of multiple aging treatments. A total of 38 different heat treatments were conducted on these specimens. There was a linear correlation between hardness and ultimate and yield strength. Optical microscopy showed martensitic structures with very fine grains in all the tested samples. Scanning Electron Microscope (SEM) images showed ductile fracture in all the samples.


2011 ◽  
Vol 94 (3) ◽  
pp. 735-742 ◽  
Author(s):  
Irena Vovk ◽  
Breda Simonovska

Abstract An HPTLC method with densitometric quantification using fluorescence at 313 nm was developed and validated for the determination of ofloxacin residue in controlling pharmaceutical equipment cleanliness. Simulated samples at a residue level of 1 mg/m2 were prepared by spreading the calculated amount of ofloxacin solution on 1, 5, and 10 dm2 stainless steel surfaces. After evaporation of the solvent, the residue was removed by two ethanol wetted cotton swabs, which were thereafter extracted with the mixture of ethanol and Na2EDTA–water solution at pH 11 for 15 min with sonication. The extract and standards were applied on HPTLC silica gel 60 plates and then developed in a horizontal developing chamber from both sides using ethanol-conc. ammonia (4 + 1, v/v) as the mobile phase. The mean recovery (n = 6) at 1 mg/m2 from 1, 5, and 10 dm2 was 95.3, 88.6, and 89.7% with the CV values 3.78, 4.41, and 4.97%, respectively. The absolute detection limit was 0.6 ng and the quantitation limit was 2 ng, but it was shown that these can be improved by immersion of the developed plate into a solution of liquid paraffin–n-hexane (1 + 2, v/v) to approximately 0.25 and 0.9 ng, respectively. The LOD of the method using detection without paraffin–n-hexane was 3, 0.6, and 0.3 μg/m2 by swabbing 1, 5, and 10 dm2, respectively. The method can be applied to routine control of pharmaceutical equipment cleanliness by sampling from stainless steel surface areas of 1 to 10 dm2 with acceptable residue limit/surface of 1 mg/m2.


ACS Catalysis ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 5235-5241 ◽  
Author(s):  
Belén Bachiller-Baeza ◽  
Ana Iglesias-Juez ◽  
Eva Castillejos-López ◽  
Antonio Guerrero-Ruiz ◽  
Marco Di Michiel ◽  
...  

2014 ◽  
Vol 39 (19) ◽  
pp. 10154-10160 ◽  
Author(s):  
Manabu Miyamoto ◽  
Risa Hayakawa ◽  
Yasutaka Makino ◽  
Yasuhiro Oumi ◽  
Shigeyuki Uemiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document