Electrochemical-assisted hydrolysis/acidification-based processes as a cost-effective and efficient system for pesticide wastewater treatment

2020 ◽  
Vol 397 ◽  
pp. 125417
Author(s):  
Hongchao Min ◽  
Dongxue Hu ◽  
Hongcheng Wang ◽  
Yuanyi Zhao ◽  
Yubo Cui ◽  
...  
2018 ◽  
Vol 8 (4) ◽  
pp. 777-785
Author(s):  
Mahmudur Rahman Idris ◽  
Md. Arifuzzaman ◽  
Arnob Basak ◽  
Tonmoy Saha and Jarin Yasmin

2012 ◽  
Vol 63 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Višnja Oreščanin ◽  
Robert Kollar ◽  
Karlo Nađ ◽  
Ivanka Mikelić ◽  
Nenad Mikulić

Boat Pressure Washing Wastewater Treatment with Calcium Oxide and/or Ferric ChlorideThe aim of this study was to investigate the efficiency of (1) chemical precipitation by calcium oxide, (2) coagulation/flocculation by ferric chloride (FC), and (3) the combination these two methods in reducing the toxicity of wastewater generated by boat pressure washing. All three methods gave satisfactory results in the removal of colour, turbidity, Cr, Fe, Cu, Zn, and Pb. The concentrations of heavy metals were lowered below national limits with 1 g of CaO, 2.54 mg of Fe3+ in the form of FeCl3x6H2O, and the combination of 0.25 g of CaO and 5.08 mg of Fe3+ per 50 mL of wastewater. Both CaO (1.50 g per 50 mL of wastewater) and FC proved efficient, but their combination yielded a significantly better performance: 99.41 %, 100.00 %, 97.87 %, 99.09 %, 99.90 %, 99.46 % and 98.33 % for colour, turbidity, Cr, Fe, Cu, Zn, and Pb respectively. For colour, Cr, Cu, Zn, and Pb removal efficiencies increased in the following order: FC<CaO<CaO+FC, while this order for turbidity and Fe was as follows: CaO<FC<CaO+FC. As expected, all three methods increased the concentration of total dissolved solids in the final effluent. Our results suggest that the combined treatment of marina wastewaters with calcium oxide followed by ferric chloride is efficient, cost-effective, and user-friendly.


2021 ◽  
Author(s):  
John Snyder ◽  
Graeme Salmon

Abstract The challenging offshore drilling environment has increased the need for cost-effective operations to deliver accurate well placement, high borehole quality, and shoe-to-shoe drilling performance. As well construction complexity continues to develop, the need for an improved systems approach to delivering integrated performance is critical. Complex bottom hole assemblies (BHA) used in deepwater operations will include additional sensors and capabilities than in the past. These BHAs consist of multiple cutting structures (bit/reamer), gamma, resistivity, density, porosity, sonic, formation pressure testing/sampling capabilities, as well as drilling dynamics systems and onboard diagnostic sensors. Rock cutting structure design primarily relied on data capture at the surface. An instrumented sensor package within the drill bit provides dynamic measurements allowing for better understanding of BHA performance, creating a more efficient system for all drilling conditions. The addition of intelligent systems that monitor and control these complex BHAs, makes it possible to implement autonomous steering of directional drilling assemblies in the offshore environment. In the Deepwater Gulf of Mexico (GOM), this case study documents the introduction of a new automated drilling service and Intelligent Rotary Steerable System (iRSS) with an instrumented bit. Utilizing these complex BHAs, the system can provide real-time (RT) steering decisions automatically given the downhole tool configuration, planned well path, and RT sensor information received. The 6-3/4-inch nominal diameter system, coupled with the instrumented bit, successfully completed the first 5,400-foot (1,650m) section while enlarging the 8-1/2-inch (216mm) borehole to 9-7/8 inches (250mm). The system delivered a high-quality wellbore with low tortuosity and minimal vibration, while keeping to the planned well path. The system achieved all performance objectives and captured dynamic drilling responses for use in an additional applications. This fast sampling iRSS maintains continuous and faster steering control at high rates of penetration (ROP) providing accurate well path directional control. The system-matched polycrystalline diamond (PDC) bit is engineered to deliver greater side cutting efficiency with enhanced cutting structure improving the iRSS performance. Included within the bit is an instrumentation package that tracks drilling dynamics at the bit. The bit dynamics data is then used to improve bit designs and optimize drilling parameters.


2021 ◽  
pp. 218-245
Author(s):  
R. Jasrotia

The decreasing levels of consumable water on earth have been a serious issue and this issue makes the researchers and scientists develop new technologies for the purification of polluted water. Several reports have been carried on wastewater remediation by utilizing spinel ferrite-based nanoparticles and their composites. The spinel ferrites-based nanoparticles utilized for wastewater treatment was cost effective, chemically stable, easily retrieved and reusable. The present work addresses the various fabrication techniques for the preparation of spinel ferrite-based nanoparticles and their utilization for the removal of organic and inorganic pollutants through the adsorption paths.


The systems which deals with healthcare are rapidly untouched and a widespread area, where both opportunities & challenges are plenty. The increase of smart mobile phones and advancement in sensors which are used for medical purpose, these devices enhance Wireless Body Area Networks (WBAN). Which is used for patient monitoring remotely called as M-health also called as Mobile-health. It increases the quality and health care by providing a reliable and cost effective. In this system, a protocol called LSAP (Lightweight and Security Aware protocol). LSAP is proposed to assist Device to Device transmission of data for Mobile health systems by means of ORA (Optimal Relay Assignment) algorithm. Linear marking Mechanism was a general idea behind ORAA algorithm. To realize polynomial time complexity at the end of every iteration; are offered by linear marking. To increase the objective function during iteration process, ORA regulate the assignment which is the preliminary assignment. Source node of minimum capacity was identified by ORA at the time of iteration process, which results in designing an efficient system.


2020 ◽  
Vol 69 (2) ◽  
pp. 193-203
Author(s):  
QANDEEL LARAIB ◽  
MARYAM SHAFIQUE ◽  
NUSRAT JABEEN ◽  
SEHAR AFSHAN NAZ ◽  
HAFIZ RUB NAWAZ ◽  
...  

Microbial populations within the rhizosphere have been considered as prosperous repositories with respect to bioremediation aptitude. Among various environmental contaminants, effluent from textile industries holds a huge amount of noxious colored materials having high chemical oxygen demand concentrations causing ecological disturbances. The study was aimed to explore the promising mycobiome of rhizospheric soil for the degradation of azo dyes to develop an efficient system for the exclusion of toxic recalcitrants. An effluent sample from the textile industry and soil samples from the rhizospheric region of Musa acuminata and Azadirachta indica were screened for indigenous fungi to decolorize Congo red, a carcinogenic diazo dye, particularly known for its health hazards to the community. To develop a bio-treatment process, Aspergillus terreus QMS-1 was immobilized on pieces of Luffa cylindrica and exploited in stirred tank bioreactor under aerobic and optimized environment. Quantitative estimation of Congo red decolorization was carried out using UV-Visible spectrophotometer. The effects of fungal immobilization and biosorption on the native structure of Luffa cylindrica were evaluated using a scanning electron microscope. A. terreus QMS-1 can remove (92%) of the dye at 100 ppm within 24 h in the presence of 1% glucose and 1% ammonium sulphate at pH 5.0. The operation of the bioreactor in a continuous flow for 12 h with 100 ppm of Congo red dye in simulated textile effluent resulted in 97% decolorization. The stirred tank bioreactor was found to be a dynamic, well maintained, no sludge producing approach for the treatment of textile effluents by A. terreus QMS-1 of the significant potential for decolorization of Congo red.


Sign in / Sign up

Export Citation Format

Share Document