Model Ag/CeO2 catalysts for soot combustion: Roles of silver species and catalyst stability

2021 ◽  
pp. 132802
Author(s):  
Zhen Zhao ◽  
Jing Ma ◽  
Min Li ◽  
Wei Liu ◽  
Xiaodong Wu ◽  
...  
2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3512
Author(s):  
Reem Shomal ◽  
Babatunde Ogubadejo ◽  
Toyin Shittu ◽  
Eyas Mahmoud ◽  
Wei Du ◽  
...  

Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal–organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.


2021 ◽  
pp. 150183
Author(s):  
Begoña Sellers-Antón ◽  
Esther Bailón-García ◽  
Arantxa Davó-Quiñonero ◽  
Dolores Lozano-Castelló ◽  
Agustín Bueno-López
Keyword(s):  

2021 ◽  
Vol 294 ◽  
pp. 120271
Author(s):  
Hanying Liang ◽  
Baofang Jin ◽  
Min Li ◽  
Xiaoxian Yuan ◽  
Jie Wan ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 283
Author(s):  
Oxana Kholdeeva ◽  
Nataliya Maksimchuk

In recent years, metal–organic frameworks (MOFs) have received increasing attention as selective oxidation catalysts and supports for their construction. In this short review paper, we survey recent findings concerning use of MOFs in heterogeneous liquid-phase selective oxidation catalysis with the green oxidant–aqueous hydrogen peroxide. MOFs having outstanding thermal and chemical stability, such as Cr(III)-based MIL-101, Ti(IV)-based MIL-125, Zr(IV)-based UiO-66(67), Zn(II)-based ZIF-8, and some others, will be in the main focus of this work. The effects of the metal nature and MOF structure on catalytic activity and oxidation selectivity are analyzed and the mechanisms of hydrogen peroxide activation are discussed. In some cases, we also make an attempt to analyze relationships between liquid-phase adsorption properties of MOFs and peculiarities of their catalytic performance. Attempts of using MOFs as supports for construction of single-site catalysts through their modification with heterometals will be also addressed in relation to the use of such catalysts for activation of H2O2. Special attention is given to the critical issues of catalyst stability and reusability. The scope and limitations of MOF catalysts in H2O2-based selective oxidation are discussed.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2015 ◽  
Vol 5 (9) ◽  
pp. 4594-4601 ◽  
Author(s):  
Jinguo Wang ◽  
Gaoyang Yang ◽  
Li Cheng ◽  
Eun Woo Shin ◽  
Yong Men

MCr2O4 catalysts with three-dimensional ordered macroporous structures displayed superior catalytic activity for soot combustion to their bulk counterparts.


RSC Advances ◽  
2014 ◽  
Vol 4 (29) ◽  
pp. 14879 ◽  
Author(s):  
Hui Zhang ◽  
Fangna Gu ◽  
Qing Liu ◽  
Jiajian Gao ◽  
Lihua Jia ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
José Antonio Díaz-López ◽  
Jordi Guilera ◽  
Martí Biset-Peiró ◽  
Dan Enache ◽  
Gordon Kelly ◽  
...  

The present work explores the technical feasibility of passivating a Co/γ-Al2O3 catalyst by atomic layer deposition (ALD) to reduce deactivation rate during Fischer–Tropsch synthesis (FTS). Three samples of the reference catalyst were passivated using different numbers of ALD cycles (3, 6 and 10). Characterization results revealed that a shell of the passivating agent (Al2O3) grew around catalyst particles. This shell did not affect the properties of passivated samples below 10 cycles, in which catalyst reduction was hindered. Catalytic tests at 50% CO conversion evidenced that 3 and 6 ALD cycles increased catalyst stability without significantly affecting the catalytic performance, whereas 10 cycles caused blockage of the active phase that led to a strong decrease of catalytic activity. Catalyst deactivation modelling and tests at 60% CO conversion served to conclude that 3 to 6 ALD cycles reduced Co/γ-Al2O3 deactivation, so that the technical feasibility of this technique was proven in FTS.


Sign in / Sign up

Export Citation Format

Share Document