scholarly journals H. pylori -Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression

Cell Reports ◽  
2015 ◽  
Vol 13 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Mara L. Hartung ◽  
Dorothea C. Gruber ◽  
Katrin N. Koch ◽  
Livia Grüter ◽  
Hubert Rehrauer ◽  
...  
2021 ◽  
Vol 4 (10) ◽  
pp. e202101159
Author(s):  
Alexandra K Ciminera ◽  
Sarah C Shuck ◽  
John Termini

We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N2-(1-carboxyethyl)-2ʹ-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α–mediated transcription of NER genes via enhanced 2-ketoglutarate–dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.


Mutagenesis ◽  
2019 ◽  
Vol 34 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Leticia K Lerner ◽  
Natália C Moreno ◽  
Clarissa R R Rocha ◽  
Veridiana Munford ◽  
Valquíria Santos ◽  
...  

Abstract Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.


2020 ◽  
Vol 32 (2) ◽  
pp. 141
Author(s):  
Z. Jiang ◽  
E. Gutierrez ◽  
H. Ming ◽  
B. Foster ◽  
L. Gatenby ◽  
...  

The ability to cryopreserve gametes and embryos has been a valuable tool for reproductive management in all mammalian species, especially livestock. Embryo vitrification involves exposure to high concentrations of cryoprotectants and osmotic stress during cooling and warming. These factors have to affect gene expression. The elongating embryo is a stage of embryo development that can be recovered noninvasively in the cow on day (D) 14 and represents a critical stage of development when many embryos die. In this study, we aimed to evaluate the effect of vitrification on the transcriptome dynamics of D14 embryos by RNA sequencing (RNA-seq). Invitro blastocyst-stage embryos were vitrified by exposure to dimethyl sulfoxide and ethylene glycol solution, followed by placing on Cryo Loks and plunging in liquid nitrogen. After warming, embryos were loaded into straws and transferred into eight synchronized recipients, four cows received nonvitrified embryos and four cows received vitrified embryos (20 embryos per cow). Embryo flushing yielded 12 nonvitrified and 9 vitrified viable D14 embryos. Whole embryos (six nonvitrified and two vitrified embryos) or isolated trophectoderm (TE; four nonvitrified and seven vitrified) were processed for RNA-seq. The Smart-sEqn 2 protocol was followed to prepare RNA-seq libraries. Sequencing reads were prefiltered and aligned to the bovine genome, and gene expression values were calculated as fragments per kilobase of transcript per million mapped reads. Genes were deemed differentially expressed between treatments if they showed a false discovery rate P-value<0.05 and fold-change >2. Ingenuity pathway analysis was used to reveal gene ontology and pathways. Expression of 927 genes was changed in D14 embryos as a result of vitrification, with 782 and 145 genes upregulated and downregulated, respectively. In TE, vitrification resulted in 4096 and 280 upregulated or downregulated genes, respectively. Several pathways were upregulated by vitrification in both whole embryos and TE, including epithelial adherens junctions, sirtuin signalling, germ cell-Sertoli cell junction, ATM signalling, nucleotide excision repair, and protein ubiquitination pathways. Downregulated pathways included EIF2 signalling, oxidative phosphorylation, mitochondrial dysfunction, regulation of eIF4 and p70S6K signalling, mammalian target of rapamycin signalling, sirtuin singling, and nucleotide excision repair pathways. In addition, we found 671 and 61 genes upregulated and downregulated in both vitrified whole embryos and TE. Mitochondrial dysfunction and oxidative phosphorylation signalling were upregulated, whereas epithelial adherens junction and sirtuin signalling were downregulated, suggesting mitochondrial function and energy production were impaired in TE after vitrification. Our analysis identified specific pathways and implicated specific genes affected by cryopreservation and potentially affecting embryo developmental competence.


2004 ◽  
Vol 3 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Mobeen Malik ◽  
John L. Nitiss

ABSTRACT DNA topoisomerases play critical roles in a wide range of cellular processes by altering DNA topology to facilitate replication, transcription, and chromosome segregation. Topoisomerases alter DNA topology by introducing transient DNA strand breaks that involve a covalent protein DNA intermediate. Many agents have been found to prevent the religation of DNA strand breaks induced by the enzymes, thereby converting the enzymes into DNA-damaging agents. Repair of the DNA damage induced by topoisomerases is significant in understanding drug resistance arising following treatment with topoisomerase-targeting drugs. We have used the fission yeast Schizosaccharomyces pombe to identify DNA repair pathways that are important for cell survival following drug treatment. S. pombe strains carrying mutations in genes required for homologous recombination such as rad22A or rad32 (homologues of RAD52 and MRE11) are hypersensitive to drugs targeting either topoisomerase I or topoisomerase II. In contrast to results observed with Saccharomyces cerevisiae, S. pombe strains defective in nucleotide excision repair are also hypersensitive to topoisomerase-targeting agents. The loss of DNA replication or DNA damage checkpoints also sensitizes cells to both topoisomerase I and topoisomerase II inhibitors. Finally, repair genes (such as the S. pombe rad8+ gene) with no obvious homologs in other systems also play important roles in causing sensitivity to topoisomerase drugs. Since the pattern of sensitivity is distinct from that seen with other systems (such as the S. cerevisiae system), our results highlight the usefulness of S. pombe in understanding how cells deal with the unique DNA damage induced by topoisomerases.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13005-13005 ◽  
Author(s):  
L. Liu ◽  
A. Bulgar ◽  
J. Donze ◽  
B. J. Adams ◽  
C. P. Theuer ◽  
...  

13005 Background: TRC102 (methoxyamine) reverses resistance to alkylating agents by inhibiting base excision repair (BER; a mechanism of DNA repair), thereby increasing DNA strand breaks and potentiating the anti-tumor activity of alkylating agents without additional toxicity, Based on these data, TRC102 is currently being studied in combination with temozolomide in a phase 1 trial. We hypothesized that inhibition of BER by TRC102 would also increase DNA strand breaks and improve the anti-tumor activity of anti-metabolite chemotherapeutics, including pemetrexed, because these agents also produce AP sites that are recognized and repaired by BER. Methods: Pemetrexed- induced AP sites and BER inhibition was quantified using an apurinic/apyrimidinic (AP) site assay in vitro. Single and double DNA strand breaks were quantified by the Comet assay in vitro and anti-tumor activity was assessed in an in vivo xenograft study of subcutaneously implanted H460 human lung cancer cells. Results: Pemetrexed induced and TRC102 reduced the number of available AP sites in pemetrexed- treated H460 cells (by 60–80%), indicating successful inhibition of BER. TRC102 treatment increased DNA strand breaks in pemetrexed-treated H460 cells (2 fold increase versus treatment with pemetrexed alone). Premetrexed treatment alone and in combination with TRC 102 delayed tumor growth in vivo (tumor growth delay of 4.7 days in the 150 mg/m2 pemetrexed alone group, 5.7 days in the 150 mg/m2 pemetrexed + 2 mg/m2 TRC102 group and 6.9 days in the 150 mg/m2 pemetrexed + 4 mg/m2 TRC102 group); in vivo systemic toxicity was not increased. TRC102 alone had no effect in vitro or in vivo. Conclusions: TRC102 effectively inhibits BER in lung cancer cells treated with pemetrexed. Inhibition of DNA repair by TRC102 results in an increase in DNA strand breaks and improved anti-tumor activity versus treatment with pemetrexed alone. Given its preclinical efficacy and safety profile, study of TRC102 combined with pemetrexed in a phase 1 trial is warranted. No significant financial relationships to disclose.


DNA Repair ◽  
2008 ◽  
Vol 7 (9) ◽  
pp. 1437-1454 ◽  
Author(s):  
Yukihiko Dan ◽  
Yutaka Ohta ◽  
Daisuke Tsuchimoto ◽  
Mizuki Ohno ◽  
Yasuhito Ide ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karen L. Thijssen ◽  
Melanie van der Woude ◽  
Carlota Davó-Martínez ◽  
Dick H. W. Dekkers ◽  
Mariangela Sabatella ◽  
...  

AbstractThe 10-subunit TFIIH complex is vital to transcription and nucleotide excision repair. Hereditary mutations in its smallest subunit, TTDA/GTF2H5, cause a photosensitive form of the rare developmental disorder trichothiodystrophy. Some trichothiodystrophy features are thought to be caused by subtle transcription or gene expression defects. TTDA/GTF2H5 knockout mice are not viable, making it difficult to investigate TTDA/GTF2H5 in vivo function. Here we show that deficiency of C. elegans TTDA ortholog GTF-2H5 is, however, compatible with life, in contrast to depletion of other TFIIH subunits. GTF-2H5 promotes TFIIH stability in multiple tissues and is indispensable for nucleotide excision repair, in which it facilitates recruitment of TFIIH to DNA damage. Strikingly, when transcription is challenged, gtf-2H5 embryos die due to the intrinsic TFIIH fragility in absence of GTF-2H5. These results support the idea that TTDA/GTF2H5 mutations cause transcription impairment underlying trichothiodystrophy and establish C. elegans as model for studying pathogenesis of this disease.


Sign in / Sign up

Export Citation Format

Share Document