scholarly journals Proteome-wide Changes in Protein Turnover Rates in C. elegans Models of Longevity and Age-Related Disease

Cell Reports ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 3041-3051 ◽  
Author(s):  
Marieke Visscher ◽  
Sasha De Henau ◽  
Mattheus H.E. Wildschut ◽  
Robert M. van Es ◽  
Ineke Dhondt ◽  
...  
Author(s):  
Evelyn S Vincow ◽  
Ruth E Thomas ◽  
Gennifer E Merrihew ◽  
Michael J MacCoss ◽  
Leo J Pallanck

Abstract The accumulation of protein aggregates and dysfunctional organelles as organisms age has led to the hypothesis that aging involves general breakdown of protein quality control. We tested this hypothesis using a proteomic and informatic approach in the fruit fly Drosophila melanogaster. Turnover of most proteins was markedly slower in old flies. However, ribosomal and proteasomal proteins maintained high turnover rates, suggesting that the observed slowdowns in protein turnover might not be due to a global failure of quality control. As protein turnover reflects the balance of protein synthesis and degradation, we investigated whether decreases in synthesis or decreases in degradation would best explain the observed slowdowns in protein turnover. We found that while many individual proteins in old flies showed slower turnover due to decreased degradation, an approximately equal number showed slower turnover due to decreased synthesis, and enrichment analyses revealed that translation machinery itself was less abundant. Mitochondrial complex I subunits and glycolytic enzymes were decreased in abundance as well, and proteins involved in glutamine-dependent anaplerosis were increased, suggesting that old flies modify energy production to limit oxidative damage. Together, our findings suggest that age-related proteostasis changes in Drosophila represent a coordinated adaptation rather than a system collapse.


2020 ◽  
Author(s):  
Rebecca L. McIntyre ◽  
Simone W. Denis ◽  
Rashmi Kamble ◽  
Michael Petr ◽  
Bauke V. Schomakers ◽  
...  

AbstractTranscriptome-based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age-related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf-16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA-approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in C. elegans. This longevity is dependent on both daf-16 signaling and inhibition of the neuromuscular acetylcholine receptor. Other neuromuscular blockers tubocurarine and pancuronium caused similar healthspan benefits. We demonstrate nuclear localization of DAF-16 upon atracurium treatment, and, using RNAseq transcriptomics, identify activation of DAF-16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF-16 longevity pathway.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Pan Liu ◽  
Seby Louis Edassery ◽  
Laith Ali ◽  
Benjamin R Thomson ◽  
Jeffrey N Savas ◽  
...  

The lenticular fiber cells are comprised of extremely long-lived proteins while still maintaining an active biochemical state. Dysregulation of these activities has been implicated in diseases such as age-related cataracts. However, the lenticular protein dynamics underlying health and disease is unclear. We sought to measure the global protein turnover rates in the eye using nitrogen-15 labeling of mice and mass spectrometry. We measured the 14N/15N-peptide ratios of 248 lens proteins, including Crystallin, Aquaporin, Collagen and enzymes that catalyze glycolysis and oxidation/reduction reactions. Direct comparison of lens cortex versus nucleus revealed little or no 15N-protein contents in most nuclear proteins, while there were a broad range of 14N/15N ratios in cortex proteins. Unexpectedly, like Crystallins, many enzymes with relatively high abundance in nucleus were also exceedingly long-lived. The slow replacement of these enzymes in spite of young age of mice suggests their potential roles in age-related metabolic changes in the lens.


1984 ◽  
Vol 217 (2) ◽  
pp. 507-516 ◽  
Author(s):  
D F Goldspink ◽  
F J Kelly

Changes in the growth and protein turnover (measured in vivo) of the rat liver, kidney and whole body were studied between 16 days of life in utero and 105 weeks post partum. Tissue and whole-body growth were related to changes in both cellular hyperplasia (i.e. changes in DNA) and hypertrophy (protein/DNA values) and to the protein composition within the enlarging tissue mass. The suitability of using a single large dose of phenylalanine for measuring the rates of protein synthesis during both pre- and post-natal life was established. The declining growth rates in the whole animal and the two visceral tissues were then explained by developmental changes in the fractional rates of protein synthesis and breakdown, turnover rates being age-for-age higher in the liver than in the kidney, which in turn were higher than those measured in the whole animal. The declining fractional rates of synthesis in both tissues and the whole body with increasing age were related to changes in the tissues' ribosomal capacity and activity. The fall in the hepatic rate between 18 and 20 days of foetal life (from 134 to 98% per day) corresponded to a decrease in both the ribosomal capacity and the rate of synthesis per ribosome. No significant changes in any of these parameters were, however, found in the liver between weaning (3 weeks) and senility (105 weeks). In contrast, the fractional synthetic (and degradative) rates progressively declined in the kidney (from 95 to 24% per day) and whole body (from 70 to 11% per day) throughout both pre- and post-natal life, mainly as a consequence of a progressive decline in the ribosomal capacity, but with some fall in the ribosomal activity also during foetal life. The age-related contributions of these visceral tissues to the total amount of protein synthesized per day by the whole animal were determined. The renal contribution remained fairly constant at 1.6-2.9%, whereas the hepatic contribution declined from 56 to 11%, with increasing age. Approximate-steady-state conditions were reached at, and between, 44 and 105 weeks post partum, the half-life values of mixed whole-body, kidney and liver proteins being 6.4, 3.0 and 1.5 days, respectively, at 105 weeks.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Priyanka Joshi ◽  
Michele Perni ◽  
Ryan Limbocker ◽  
Benedetta Mannini ◽  
Sam Casford ◽  
...  

AbstractAge-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer’s disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 163
Author(s):  
Swapnil Gupta ◽  
Panpan You ◽  
Tanima SenGupta ◽  
Hilde Nilsen ◽  
Kulbhushan Sharma

Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mercedes M. Pérez-Jiménez ◽  
José M. Monje-Moreno ◽  
Ana María Brokate-Llanos ◽  
Mónica Venegas-Calerón ◽  
Alicia Sánchez-García ◽  
...  

AbstractAging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.


Sign in / Sign up

Export Citation Format

Share Document