The role of heat treatment on the structural and nano-mechanical properties of SmCo 5 thin films grown by RF magnetron sputtering technique

2017 ◽  
Vol 43 (4) ◽  
pp. 3893-3899 ◽  
Author(s):  
M. Kuru ◽  
A.E. Ozmetin ◽  
A. Ozmetin ◽  
O. Sahin
2011 ◽  
Vol 380 ◽  
pp. 238-243 ◽  
Author(s):  
Hui Zhi ◽  
Jing Lin ◽  
Bo Zhang

The SiOx thin films for food packaging were deposited by RF magnetron sputtering physical vapor technology on the substrates of 20μm polyethylene terephthalate (PET) by using a pure SiO2 target. The molecular structure of thin film surface composition were detected and analyzed by Fourier transform infrared spectroscopy (FTIR); and the barrier properties of the films were examined by MOCON water vapor permeability testing instrument, also,the relationship maps between permeability and process parameters were drew and the process parameters were optimized; The mechanical properties of thin films were tested by electronic tensile testing machine, and the curves of the relationship between the mechanical properties and process parameters depicted. The SiOx/PET thin films of the lowest water vapor permeability were prepared under the pressure of 7.5×10-3 Pa, the sputtering pressure of 0.23 Pa, the deposition time of 30min and the sputtering power of 1500W. The yield strength increased 4 times and elastic modulus increased 3 times when the water vapor permeability of the SiOx/PET thin films rose about 10 times of the blank.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anis Suhaili Bakri ◽  
Nafarizal Nayan ◽  
Chin Fhong Soon ◽  
Mohd Khairul Ahmad ◽  
Ahmad Shuhaimi Abu Bakar ◽  
...  

Purpose This paper aims to report the influence of sputtering plasma deposition time on the structural and mechanical properties of the a-axis oriented aluminium nitride (AlN) thin films. Design/methodology/approach The AlN films were prepared using RF magnetron sputtering plasma on a silicon substrate without any external heating with various deposition times. The films were characterized using X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), atomic force microscope (AFM) and nanoindentation techniques. Findings The XRD results show that the AlN thin films are highly oriented along the (100) AlN plane at various deposition times indicating the a-axis preferred orientation. All the AlN thin films exhibit hexagonal AlN with a wurtzite structure. The hardness and Young’s modulus of AlN thin films with various deposition times were measured using a nanoindenter. The measured hardness of the AlN films on Si was in the range of 14.1 to 14.7 GPa. The surface roughness and the grain size measured using the AFM revealed that both are dependent on the deposition times. Originality/value The novelty of this work lies with a comparison of hardness and Young’s modulus result obtained at different sputtering deposition temperature. This study also provides the relation of AlN thin films’ crystallinity with the hardness of the deposited films.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
L. Natrayan ◽  
S. Balaji ◽  
G. Bharathiraja ◽  
S. Kaliappan ◽  
Dhinakaran Veeman ◽  
...  

The mechanical properties of TiAlN deposited on the steel are explained in this study. Thin films are deposited by RF magnetron sputtering on the steel substrates to improve the wear resistance and hardness of the samples. Due to their improved microstructure and nanograins, the nanofilms have improved the mechanical properties of the steel substrate surface. The thin film deposited has improved the wear resistance by 80% and has improved the hardness by 95%. The deposited thin films are tested for hardness by nanoindentation and wear test by the pin-on-disk test. SEM has tested films for their microstructure and adhesion by nanoscratch test.


2020 ◽  
Vol 1012 ◽  
pp. 119-124
Author(s):  
Paulo Victor Nogueira da Costa ◽  
Rodrigo Amaral de Medeiro ◽  
Carlos Luiz Ferreira ◽  
Leila Rosa Cruz

This work investigates the microstructural and morphological changes on CIGS thin films submitted to a post-deposition heat treatment. The CIGS 1000 nm-thick films were deposited at room temperature by RF magnetron sputtering onto glass substrates covered with molybdenum films. After deposition, the samples were submitted to a heat treatment, with temperatures ranging from 450 to 575 oC. The treatment was also carried out under a selenium atmosphere (selenization), from 400 to 500 oC. Morphological analyzes showed that the as-deposited film was uniform and amorphous. When the treatment was carried out without selenization, the crystallization occurred at or above 450 oC, and the grains remained nanosized. However, high temperatures led to the formation of discontinuities on the film surface and the formation of extra phases, as confirmed by X-ray diffraction data. The crystallization of the films treated under selenium atmosphere took place at lower temperatures. However, above 450 °C the film surface was discontinuous, with a lot of holes, whose amount increased with the temperature, showing that the selenization process was very aggressive. X-ray diffraction analyses showed that the extra phases were eliminated during selenization and the films had a preferential orientation along [112] direction. The results indicate that in the manufacturing process of solar cells, CIGS films deposited at room temperature should be submitted to a heat treatment carried out at 450 °C (without selenization) or 400 °C (with selenization).


Sign in / Sign up

Export Citation Format

Share Document