Nitroaniline chemi-sensor based on bitter gourd shaped ytterbium oxide (Yb2O3) doped zinc oxide (ZnO) nanostructures

2019 ◽  
Vol 45 (11) ◽  
pp. 13825-13831 ◽  
Author(s):  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Tubia Almas ◽  
M.S. Al-Assiri ◽  
...  
2008 ◽  
Vol 1087 ◽  
Author(s):  
Marco Palumbo ◽  
Simon J. Henley ◽  
Thierry Lutz ◽  
Vlad Stolojan ◽  
David Cox ◽  
...  

AbstractRecent results in the use of Zinc Oxide (ZnO) nano/submicron crystals in fields as diverse as sensors, UV lasers, solar cells, piezoelectric nanogenerators and light emitting devices have reinvigorated the interest of the scientific community in this material. To fully exploit the wide range of properties offered by ZnO, a good understanding of the crystal growth mechanism and related defects chemistry is necessary. However, a full picture of the interrelation between defects, processing and properties has not yet been completed, especially for the ZnO nanostructures that are now being synthesized. Furthermore, achieving good control in the shape of the crystal is also a very desirable feature based on the strong correlation there is between shape and properties in nanoscale materials. In this paper, the synthesis of ZnO nanostructures via two alternative aqueous solution methods - sonochemical and hydrothermal - will be presented, together with the influence that the addition of citric anions or variations in the concentration of the initial reactants have on the ZnO crystals shape. Foreseen applications might be in the field of sensors, transparent conductors and large area electronics possibly via ink-jet printing techniques or self-assembly methods.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Ercan Karaköse ◽  
Hakan Çolak ◽  
Fatih Duman

AbstractThe manufacture of nanoparticles (NPs) is a new area of investigation due to potential applications related to the improvement of new technologies; in particular, environmentally safe manufactured nanomaterials have become a growing area within nanoscience. In this research, we synthesized zinc oxide (ZnO)-NPs using an aqueous extract of


2019 ◽  
Vol 17 (42) ◽  
pp. 108-124
Author(s):  
Ibrahim Abdulkareem Ali

        In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34.52) nm. The crystallite size increased due to the incensement of annealing temperature. FESEM analysis indicates that ZnO has hexagonal shape of cylindrical pores, plate-like nanocrystals and Nanorods. AFM analysis shows that the average surface roughness of ZnO Nanostructures increases from 3.96 to 19.1 nm with the increase of annealing temperature. The FTIR peaks indicate successful preparation of ZnO Nanostructures. The FTIR method was used to analyses the chemical bonds which conformed the present of the Zn-O group in the region between (400-500) cm-1. The UV-visible showed a red shift in the absorption spectra related to the shift in the energy gap related to increase in the particle size.  the band gap energy has been calculated from the optical absorption spectra. The annealing process has been fond more effective on the value of energy gap. As the annealing temperature increases, the value of energy gap, increases as well; from (3.12to 3.22) eV. The prepared Nanostructure is used for antibacterial property. It shows strong antibacterial activity against S. aureus and P.aeuruginosa bacteria by the agar disc diffusion method. The white precipitate of ZnO NSs has superior antibacterial activity on gram-positive (S. aureus) than the gram-negative (P.aeuruginosa) bacteria.


2021 ◽  
Vol 31 ◽  
pp. 55-63
Author(s):  
Najiha Hamid ◽  
Syahida Suhaimi ◽  
Muhammad Zamir Othman ◽  
Wan Zakiah Wan Ismail

Zinc oxide (ZnO) is a metal oxide material that is interested in research due to its possibility of bandgap tailoring, doping with various types of materials as well as being able to form many structures from zero-dimensional to three-dimensional structures. All these properties allow ZnO to be used in broad applications. Several research studies have been reported on the synthesis of ZnO nanostructures by the physical vapour deposition (PVD) technique. One of the potential PVD technique is thermal evaporation process. Generally, the technique is used to grow thin-film but researchers have found a potential to be used in the growth of nanostructures due to the ability to provide high crystallinity with homogeneous and uniform nanostructures. This analysis will therefore explore more about the thermal evaporation synthesized ZnO nanostructures and the application as photocatalyst material in wastewater treatment.


2019 ◽  
Vol 294 ◽  
pp. 36-41
Author(s):  
Rolen Brian P. Rivera ◽  
Melchor J. Potestas ◽  
Ma. Reina Suzette B. Madamba ◽  
Rey Y. Capangpangan ◽  
Bernabe L. Linog ◽  
...  

We report on antibacterial activities of Zinc oxide (ZnO) with different structures. Fast furrier transform infrared spectroscopy ZnO nanostructures showed peaks in the range between 450–600 cm-1 indicating the successful growth through the presence of Zn-O stretching. On the other hand, impurities such as zinc complexes might be present due to the appearance of peaks at 1110 cm-1, 1390 cm-1 and 1506 cm-1. Furthermore, SEM images revealed that nanorods and sea-urchin like nanostructures are present in the produced ZnO nanostructures. Nanorods exhibit a better antibacterial response than the sea-urchin like structure. The change in structural morphology along with its purity has greatly influenced the area of bacterial inhibition zone during antibacterial testing.


BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 145-153
Author(s):  
Guna Nidha Gnawali ◽  
Shankar P Shrestha ◽  
Khem N Poudyal ◽  
Indra B Karki ◽  
Ishwar Koirala

Gas sensors are devices that can convert the concentration of an analytic gas into an electronic signal. Zinc oxide (ZnO) is an important n-type metal oxide semiconductor which has been utilized as gas sensor for several decades. In this work, ZnO nanostructured films were synthesized by a hydrothermal route from ZnO seeds and used as a liquefied petroleum gas (LPG) sensor. At first ZnO seed layers were deposited on glass substrates by using spin coating method, then ZnO nanostructured were grown on these substrates by using hydrothermal growth method for different time duration. The effect of growth time and seed layers of ZnO nanostructured on its structural, optical, and electrical properties was studied. These nanostructures were characterized by X-ray diffraction, scanning electron microscopy, optical spectroscopy, and four probes sheet resistance measurement unit. The sensing performances of the synthetic ZnO nanostructures were investigated for LPG.XRD showed that all the ZnO nanostructures were hexagonal crystal structure with preferential orientation. SEM reviled that the size of nanostructure increased with increase in growth time. Band gap and sheet resistance for ZnO nanostructured thin film decreased with increase in growth time. ZnO nanostructured thin film showed high sensitivity towards LPG gas. The sensitivity of the film is observed to increase with increase in no of seed layers as well as growth time. The dependence of the LPG sensing properties on the different growth time of ZnO nanostructured was investigated. The sensing performances of the film were investigated by measured change in sheet resistance under expose to LPG gas. BIBECHANA 16 (2019) 145-153


2012 ◽  
Vol 1406 ◽  
Author(s):  
Magnus Willander ◽  
Omer Nur ◽  
Gul Amin ◽  
A. Zainelabdin ◽  
S. Zaman

ABSTRACTCopper oxide (CuO) and zinc oxide (ZnO) nanostructures complement each other since CuO is unintentional p-type and ZnO unintentional n-type. Using the low temperature chemical growth approach, the effect on morphology of varying the pH of the grown ZnO nanostructures and CuO micro structures is monitored. For both materials the variation of the pH was found to lead to a large variation on the morphology achieved. The grown ZnO NRs and CuO micro flowers material were used to fabricate devices. We demonstrate results from ZnO nanorods (NRs)/polymer p-n hybrid heterojunctions chemically grown on paper and using a process on paper for light emitting diodes (LEDs) applications as well as some large area light emitting diodes LEDs. The growth of CuO micro flowers indicated good quality material for sensing applications. The grown CuO micro flowers were employed as pH sensors. The results indicated a superior performance as expect due to the catalytic properties of this material.


2020 ◽  
Vol 22 (48) ◽  
pp. 28100-28114
Author(s):  
Edyta Proniewicz ◽  
Agnieszka Tąta ◽  
Anna Wójcik ◽  
Maria Starowicz ◽  
Joanna Pacek ◽  
...  

This work evaluates the ability of homogeneous, stable, and pure zinc oxide nanoparticles (ZnONPs-GS) synthesized by “green chemistry” for the selective detection of four neurotransmitters present in body fluids and promotion of the SERS effect.


Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 42 ◽  
Author(s):  
Davide Calestani

Zinc oxide (ZnO) nanostructures can be grown in different morphologies by means of a wide range of techniques. […]


2011 ◽  
Vol 364 ◽  
pp. 45-49 ◽  
Author(s):  
Azlinda Ab Azlinda ◽  
Zuraida Khusaimi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Zinc oxide (ZnO) nanostructures prepared by immersion method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as a precursor, separately stabilized with non-toxic urea (CH4N2O) and hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterized using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows clusters of ZnO nanoflower with serrated broad petals were interestingly formed. ZnO in HMTA showed growth of nanorods. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nanostructures is found to be significantly affected by the stabilizer.


Sign in / Sign up

Export Citation Format

Share Document