The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals

Chemosphere ◽  
2020 ◽  
Vol 261 ◽  
pp. 127789
Author(s):  
Xing Cao ◽  
Rui Ma ◽  
Qiushi Zhang ◽  
Weibing Wang ◽  
Qinxiong Liao ◽  
...  
2011 ◽  
Vol 117-119 ◽  
pp. 1080-1083 ◽  
Author(s):  
Bao Guo Ma ◽  
Jing Ran Wang ◽  
Xiang Guo Li

Solidification / stabilization (S/S) is a popular method for treating solid wastes containing heavy metals. In recent years, it shows positive results of magnesium potassium phosphate cement as stabilizing agent. In the work, the influence of heavy metal Cu、Zn and Pb on magnesium phosphate cement and the leaching behavior of magnesium phosphate cement were studied. Two proportions of cements were employed with hard burned magnesia and potassium phosphate. The hydration products were analyzed by XRD showing that: Cu、Zn and Pb would not take on obvious effect during magnesium phosphate cement hydration process. Leaching toxicity tests showed that: Cu、Zn and Pb were immobilized within cement hydration products through physical fixation, adsorption mechanisms, and the results were far lower than that of the National Standard in China.


2013 ◽  
Vol 664 ◽  
pp. 683-689 ◽  
Author(s):  
Shu Cong Zhen ◽  
Yong Xun ◽  
Bu Quan Miao

Heavy metals, including Pb, Cr, Cd, Zn, Cu and Ni, were solidified/stabilized by magnesium potassium phosphate cement (MKPC). The unconfined compressive strength test shows that the strengths of the solidified bodies containing 10%-40% MKPC all exceeded 0.5 MPa, which have met the requirements of storage and landfilling. The toxicity characteristic leaching procedure (TCLP) test shows that no detectable Pb, Cr and Cd were leached from the solidified body containing 40% MKPC after being cured standardly for 28 days, and the concentrations of heavy metals leached from the solidified body containing 10% MKPC after being cured for only 7 days were still significantly lower than the limits in related Chinese National Standards. The leaching concentrations of heavy metals followed a descending order of Cu>Zn>Ni>Pb>Cd>Cr. In the simulated acid rain eluviation test, heavy metals were eluviated in different patterns, and the sequence of releasing amounts was similar to that of leaching concentrations. The experimental results indicate that heavy metals can be satisfactorily solidified by MKPC.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


2020 ◽  
Author(s):  
Changtian Gong ◽  
Shuo Fang ◽  
Kezhou Xia ◽  
Jingteng Chen ◽  
Liangyu Guo ◽  
...  

Abstract Incorporating bioactive substances into synthetic bioceramic scaffolds is challenging. In this work, oxygen-carboxymethyl chitosan (O-CMC), a natural biopolymer that is nontoxic, biodegradable and biocompatible, was introduced into magnesium potassium phosphate cement (K-struvite) to enhance its mechanical properties and cytocompatibility. This study aimed to develop O-CMC/magnesium potassium phosphate composite bone cement (OMPC), thereby combining the optimum bioactivity of O-CMC with the extraordinary self-setting properties and mechanical intensity of the K-struvite. Our results indicated that O-CMC incorporation increased the compressive strength and setting time of K-struvite and decreased its porosity and pH value. Furthermore, OMPC scaffolds remarkably improved the proliferation, adhesion and osteogenesis related differentiation of MC3T3-E1 cells. Therefore, O-CMC introduced suitable physicochemical properties to K-struvite and enhanced its cytocompatibility for use in bone regeneration.


2016 ◽  
Vol 73 (12) ◽  
pp. 2921-2928 ◽  
Author(s):  
Marla C. Maniquiz-Redillas ◽  
Lee-Hyung Kim

Abstract In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.


Sign in / Sign up

Export Citation Format

Share Document