Impact of geology and anthropogenic activities over the water quality with emphasis on fluoride in water scarce Lalitpur district of Bundelkhand region, India

Chemosphere ◽  
2021 ◽  
Vol 279 ◽  
pp. 130496
Author(s):  
Neeraj Pant ◽  
Shive Prakash Rai ◽  
Rajesh Singh ◽  
Sudhir Kumar ◽  
Ravi K. Saini ◽  
...  
2017 ◽  
Vol 68 (8) ◽  
pp. 1744-1748
Author(s):  
Catalina Stoica ◽  
Gabriela Geanina Vasile ◽  
Alina Banciu ◽  
Daniela Niculescu ◽  
Irina Lucaciu ◽  
...  

During the past few decades, the anthropogenic activities induced worldwide changes in the ecological systems, including the aquatic systems. This work analysed the contamination level of groundwater resources from a rural agglomeration (Central-Western part of Prahova County) by biological and physico-chemical approaches. The study was performed during the autumn of 2016 on several sampling sites (four drilling wells, depth higher than 100 m supplying three villages; two wells lower than 10 m depth and one spring). The water quality was evaluated by comparison with the limit values of the drinking water quality legislation (Law no.458/2002) and the Order 621/2014 (applicable to all groundwater bodies of Romania). The results showed that phenols and metals (iron and manganese) exceeded the threshold values in all sampling sites. Moreover, the anthropogenic factors including agriculture, use of fertilizers, manures, animal husbandry led to an increase of the bacterial load, particularly at wells sites.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1026
Author(s):  
Alina Bărbulescu ◽  
Cristian Ștefan Dumitriu

Water is one of the natural resources most affected by anthropogenic activities, like industry, agriculture, and traffic [...]


2021 ◽  
Vol 13 (13) ◽  
pp. 7513
Author(s):  
Joshua Lozano ◽  
Joonghyeok Heo ◽  
Mijin Seo

The purpose of this study was to evaluate the public water contamination levels of Winkler County, in West Texas. With water scarcity becoming more prevalent in arid climates like West Texas, it is important to ensure the water quality in these areas. The Dockum and Pecos Valley aquifers were analyzed for inorganic pollutants that could inhibit the water. The parameters such as copper, lead, arsenic, nitrate, chloride, and chromium level reports were provided from 1972 to 2018 to analyze and compare to other studies such as the ones conducted in the Midland/Odessa area. The results were compared to the Environmental Protection Agency (EPA) safety standards, and conclusions were made for the safety consumption of water within the county. We found that inorganic pollutants resulted mainly from the mobilization of the contaminant from anthropogenic activities such as chemical fertilizers, oil and gas developments. This research provides important information for inorganic pollutants in the sinkhole region of Winkler County and contributes to understanding the response to the aquifers. The significance of water quality in West Texas is now more important than ever to ensure that everyone has clean drinking water.


2021 ◽  
Author(s):  
Patricia M. Glibert ◽  
Cynthia A. Heil ◽  
Christopher J. Madden ◽  
Stephen P. Kelly

AbstractThe availability of dissolved inorganic and organic nutrients and their transformations along the fresh to marine continuum are being modified by various natural and anthropogenic activities and climate-related changes. Subtropical central and eastern Florida Bay, located at the southern end of the Florida peninsula, is classically considered to have inorganic nutrient conditions that are in higher-than-Redfield ratio proportions, and high levels of organic and chemically-reduced forms of nitrogen. However, salinity, pH and nutrients, both organic and inorganic, change with changes in freshwater flows to the bay. Here, using a time series of water quality and physico-chemical conditions from 2009 to 2019, the impacts of distinct changes in managed flow, drought, El Niño-related increases in precipitation, and intensive storms and hurricanes are explored with respect to changes in water quality and resulting ecosystem effects, with a focus on understanding why picocyanobacterial blooms formed when they did. Drought produced hyper-salinity conditions that were associated with a seagrass die-off. Years later, increases in precipitation resulting from intensive storms and a hurricane were associated with high loads of organic nutrients, and declines in pH, likely due to high organic acid input and decaying organic matter, collectively leading to physiologically favorable conditions for growth of the picocyanobacterium, Synechococcus spp. These conditions, including very high concentrations of NH4+, were likely inhibiting for seagrass recovery and for growth of competing phytoplankton or their grazers. Given projected future climate conditions, and anticipated cycles of drought and intensive storms, the likelihood of future seagrass die-offs and picocyanobacterial blooms is high.


2020 ◽  
Vol 182 ◽  
pp. 109136
Author(s):  
Oana Mare Roșca ◽  
Thomas Dippong ◽  
Monica Marian ◽  
Cristina Mihali ◽  
Lucia Mihalescu ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


2018 ◽  
Vol 13 (Special issue 1) ◽  
pp. 11-21
Author(s):  
KALYANI SUPRIYA ◽  
R K AGGARWAL ◽  
S K BHARDWAJ

Landuse alteration is one of the primary causes of global environmental change. Changes in the landuse usually occurred regionally and globally over last few decades and will carry on in the future as well. These activities are highly influenced by anthropogenic activities and have more serious consequences on the quality of water and air. In the present study relationship between land use impact on water and air quality have been reviewed.


2020 ◽  
Author(s):  
Long Ho ◽  
Ruben Jerves-Cobo ◽  
Matti Barthel ◽  
Johan Six ◽  
Samuel Bode ◽  
...  

Abstract. Rivers act as a natural source of greenhouse gases (GHGs) that can be released from the metabolisms of aquatic organisms. Anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG emissions. To investigate these impacts, we assessed the emissions of CO2, CH4, and N2O from Cuenca urban river system (Ecuador). High variation of the emissions was found among river tributaries that mainly depended on water quality and neighboring landscapes. By using Prati and Oregon Indexes, a clear pattern was observed between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality deteriorated from acceptable to very heavily polluted, their global warming potential (GWP) increased by ten times. Compared to the average estimated emissions from global streams, rivers with polluted water released almost double the estimated GWP while the proportion increased to ten times for very heavily polluted rivers. Conversely, the GWP of good-water-quality rivers was half of the estimated GWP. Furthermore, surrounding land-use types, i.e. urban, roads, and agriculture, significantly affected the river emissions. The GWP of the sites close to urban areas was four time higher than the GWP of the nature sites while this proportion for the sites close to roads or agricultural areas was triple and double, respectively. Lastly, by applying random forests, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the emissions. Conversely, low impact of organic matter and nitrate concentration suggested a higher role of nitrification than denitrification in producing N2O. These results highlighted the impacts of land-use types on the river emissions via water contamination by sewage discharges and surface runoff. Hence, to estimate of the emissions from global streams, both their quantity and water quality should be included.


Sign in / Sign up

Export Citation Format

Share Document