scholarly journals In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis

2011 ◽  
Vol 14 (6) ◽  
pp. 819-829 ◽  
Author(s):  
Simone C. Albrecht ◽  
Ana Gomes Barata ◽  
Jörg Großhans ◽  
Aurelio A. Teleman ◽  
Tobias P. Dick
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
C. A. Staunton ◽  
E. D. Owen ◽  
N. Pollock ◽  
A. Vasilaki ◽  
R. Barrett-Jolley ◽  
...  

Abstract To determine the role of denervation and motor unit turnover in the age-related increase in skeletal muscle oxidative stress, the hydrogen peroxide (H2O2) specific, genetically-encoded, fluorescent cyto-HyPer2 probe was expressed in mouse anterior tibialis (AT) muscle and compared with ex vivo measurements of mitochondrial oxidant generation. Crush of the peroneal nerve induced increased mitochondrial peroxide generation, measured in permeabilised AT fibers ex vivo and intra vital confocal microscopy of cyto-HyPer2 fluorescence showed increased cytosolic H2O2 in a sub-set (~24%) of individual fibers associated with onset of fiber atrophy. In comparison, mitochondrial peroxide generation was also increased in resting muscle from old (26 month) mice compared with adult (6–8 month) mice, but no age effect on fiber cytosolic H2O2in vivo was seen. Thus ageing is associated with an increased ability of muscle fibers to maintain cytosolic redox homeostasis in the presence of denervation-induced increase in mitochondrial peroxide generation.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2021 ◽  
Author(s):  
Qiuying Song ◽  
Bo Zhou ◽  
Dongyu Zhang ◽  
Haijun Chi ◽  
Hongmin Jia ◽  
...  

The development of well-designed fluorescence probes for the monitoring redox homeostasis in biosystems has become a desired research field owing to their noninvasive and real-time detection capability in vivo. In...


1994 ◽  
Vol 17 (5) ◽  
pp. 240-245 ◽  
Author(s):  
Christiane Van den Branden ◽  
Joseph Vamecq ◽  
Dierik Verbeelen ◽  
Frank Roels

RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85957-85963 ◽  
Author(s):  
Peng Wang ◽  
Ke Wang ◽  
Dan Chen ◽  
Yibo Mao ◽  
Yueqing Gu

A novel NIR fluorescent probe (DCM-B2) based on dicyanomethylene-4H-pyran was synthesized for the detection of H2O2.


2020 ◽  
Author(s):  
Ramona Meanti ◽  
Laura Rizzi ◽  
Elena Bresciani ◽  
Laura Molteni ◽  
Vittorio Locatelli ◽  
...  

AbstractHexarelin, a synthetic hexapeptide, protects cardiac and skeletal muscles by inhibiting apoptosis, both in vitro and in vivo. Moreover, evidence suggests that hexarelin could have important neuroprotective bioactivity.Oxidative stress and the generation of free radicals has been implicated in the etiologies of several neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and multiple sclerosis. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance the formation of other reactive oxygen species.The aim of this study was to examine the inhibitory influence of hexarelin on H2O2-induced apoptosis in Neuro-2A cells, a mouse neuroblastoma cell line. Our results indicate that H2O2 reduced the viability of Neuro-2A cells in a dose-related fashion. Furthermore, H2O2 induced significant changes in the morphology of Neuro-2A cells, reflected in the formation of apoptotic cell bodies, and an increase of nitric oxide (NO) production. Hexarelin effectively antagonized H2O2 oxidative damage to Neuro-2A cells as indicated by improved cell viability, normal morphology and reduced nitrite (NO2−) release. Hexarelin treatment of Neuro-2A cells also reduced mRNA levels of caspases−3 and −7 and those of the pro-apoptotic molecule Bax; by contrast, hexarelin treatment increased anti-apoptotic Bcl-2 mRNA levels. Hexarelin also reduced MAPKs phosphorylation induced by H2O2 and concurrently increased p-Akt protein expression.In conclusion, our results identify several neuroprotective and anti-apoptotic effects of hexarelin. These properties suggest that further investigation of hexarelin as a neuroprotective agent in an investigational and therapeutic context are merited.


Sign in / Sign up

Export Citation Format

Share Document