The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review

Author(s):  
Ni Wang ◽  
Nan Fu ◽  
Xiao Dong Chen
1999 ◽  
Vol 62 (7) ◽  
pp. 773-777 ◽  
Author(s):  
GIANLUIGI MAURIELLO ◽  
MARIA APONTE ◽  
ROSAMARIA ANDOLFI ◽  
GIANCARLO MOSCHETTI ◽  
FRANCESCO VILLANI

Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200°C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4°C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4°C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives.


2021 ◽  
Vol 16 (3) ◽  
pp. 190-199
Author(s):  
Badat Muwakhid ◽  
Anik Maunatin ◽  
Anif Mukaromah Wati

The aim of this study was to evaluate the effect of the types of encapsulation materials, that is skimmed milk and Arabic gum on two probiotics Lactic Acid Bacteria (LAB), including L. plantarum DJ2 and L. plantarum DJ3. The methods of this study were separated into two stages that is probiotic resistance testing during the spray drying process and the viability of LAB after spray drying during storage of probiotic powder for one month at 4oC. Changes in the viability of LAB probiotics before and after the drying process using spray drying were determined by the total plate count. The viability of lactic acid bacteria (LAB) was observed every week for one month of storage at 4oC. The results showed that different encapsulation materials had significant different (P ≤ 0.05) on changes in resistance of probiotics powder during spray drying process. The use of Arabic gum could increase the resistance of probiotics during the spray drying process, meanwhile, the use of skimmed milk was better to be able to maintain the viability of dry probiotic powder both on L.plantarum DJ2 and L.plantarum DJ3 during storage. After four weeks of storage, there was mold and yeast in the skimmed milk and Arabic gum materials. In conclusion, both Arabic gum and skim milk could be used for encapsulation where storage of dry probiotic products is recommended during one month at 4 oC.


2019 ◽  
Vol 38 (14) ◽  
pp. 1843-1856 ◽  
Author(s):  
Zhuo Zhang ◽  
Sen Peng ◽  
Xiaoqi Sun ◽  
Yu Jie ◽  
Hongfei Zhao ◽  
...  

2009 ◽  
Vol 33 (6) ◽  
pp. 714-726 ◽  
Author(s):  
YUTAKA KITAMURA ◽  
HIROYUKI ITOH ◽  
HIROSHI ECHIZEN ◽  
TAKAAKI SATAKE

1990 ◽  
Vol 55 (4) ◽  
pp. 1008-1010 ◽  
Author(s):  
SUK SHIN KIM ◽  
SANTI R. BHOWMIK

2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Khalilah Abdul Khalil

Nowadays, probiotic bacteria are extensively used in beverages application to deliver beneficial health effect to the consumer upon ingestion. Different entrapment techniques can be used to maintain the viability of probiotic bacteria during processing as well as during storage of beverage products. Development of artificial microcapsules from entrapment techniques are to support the growth and to provide protection on probiotic cells from unfavorable external conditions that may affect the viability of probiotics in beverages. Techniques that usually applied for probiotic entrapment in beverages are microencapsulation, emulsification, spray drying and extrusion. Biomaterials such as alginate, carrageenan, whey protein, gelatin, chitosan and starch are the most commonly used matrix in entrapment of lactic acid bacteria. Entrapment of probiotic is applied on beverages products such as fruit juice, yoghurt and ice cream. Keywords: Entrapment; Beverages; Matrix materials; Probiotics


2014 ◽  
Vol 32 (7) ◽  
pp. 793-800 ◽  
Author(s):  
Pimin Gong ◽  
Lanwei Zhang ◽  
Xue Han ◽  
Nditange Shigwedha ◽  
Wei Song ◽  
...  

2006 ◽  
Vol 12 (1) ◽  
pp. 77-84 ◽  
Author(s):  
L. M. Zamora ◽  
C. Carretero ◽  
D. Parés

The effect of two dehydration technologies, spray-drying and freeze-drying, on the viability of 12 lactic acid bacteria (LAB) were compared. All LAB cultures had been previously isolated from porcine blood and were candidates to be used as biopreservatives in order to maintain the quality of porcine blood until further processing to obtain added-value blood derivatives is carried out. The residual viability and the reductions in microbial counts in dried LAB samples at 20 °C and 5 °C during 60-day storage were determined. Cellular damage due to freeze-drying was observed immediately after drying whereas cellular damage due to spray-drying did not become evident until the subsequent phase of storage. For most of the strains, the faster decrease in viability of spray-dried as compared to freeze-dried cultures was compensated by the higher percentage of viable cells obtained after dehydration, leading to comparable survival rates at the end of the storage period. Dehydration resulted in a good alternative to freezing at 80 °C for preservation purposes. Spray-drying has been shown to be as suitable as freeze-drying for preserving LAB strains during a 2-month storage period. Results suggest the possibility of achieving a good formulation system for the LAB strains with a high number of viable cells to be used for the industrial development of bioprotective cultures.


Sign in / Sign up

Export Citation Format

Share Document