scholarly journals Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications

2022 ◽  
Vol 46 ◽  
pp. 100570
Author(s):  
Saurabh Shah ◽  
Paras Famta ◽  
Rajeev Singh Raghuvanshi ◽  
Shashi Bala Singh ◽  
Saurabh Srivastava
2020 ◽  
Author(s):  
Mikhail Trought ◽  
Isobel Wentworth ◽  
Timothy Leftwich ◽  
Kathryn Perrine

The knowledge of chemical functionalization for area selective deposition (ASD) is crucial for designing the next generation heterogeneous catalysis. Surface functionalization by oxidation was studied on the surface of highly oriented pyrolytic graphite (HOPG). The HOPG surface was exposed to with various concentrations of two different acids (HCl and HNO3). We show that exposure of the HOPG surface to the acid solutions produce primarily the same -OH functional group and also significant differences the surface topography. Mechanisms are suggested to explain these strikingly different surface morphologies after surface oxidation. This knowledge can be used to for ASD synthesis methods for future graphene-based technologies.


2012 ◽  
Vol 8 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Sonia Bailon-Ruiz ◽  
Luis Alamo-Nole ◽  
Oscar Perales-Perez

RSC Advances ◽  
2018 ◽  
Vol 8 (66) ◽  
pp. 38056-38064 ◽  
Author(s):  
Jie Cao ◽  
Tao Song ◽  
Yuejun Zhu ◽  
Xiujun Wang ◽  
Shanshan Wang ◽  
...  

The amino-functionalized nanosilica/polymer hybrid systems have better salt tolerance and EOR performance than unmodified nanosilica polymer hybrid systems.


2019 ◽  
Vol 160 ◽  
pp. 130-142 ◽  
Author(s):  
Vivek Dave ◽  
Kajal Tak ◽  
Amit Sohgaura ◽  
Ashish Gupta ◽  
Veera Sadhu ◽  
...  

2020 ◽  
Vol 8 (36) ◽  
pp. 12380-12411
Author(s):  
Pan Jiang ◽  
Zhongying Ji ◽  
Xiaolong Wang ◽  
Feng Zhou

Various requirements for 3D printing raised by actual applications in different fields have provoked the rapid development of technologies together with various specific materials.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


Sign in / Sign up

Export Citation Format

Share Document