Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells

2020 ◽  
Vol 194 ◽  
pp. 111189 ◽  
Author(s):  
Sabrina A. Camacho ◽  
Mirella B. Kobal ◽  
Alexandre M. Almeida ◽  
Karina A. Toledo ◽  
Osvaldo N. Oliveira ◽  
...  
2021 ◽  
Vol 46 (1SI) ◽  
pp. 18-29
Author(s):  
Andressa Ribeiro Pereira ◽  
Osvaldo Novais de Oliveira Junior

Understanding the role of biomolecules in cells at the molecular level has been the trade of Prof. Marcio Francisco Colombo and Prof. Jo�o Ruggiero Neto in their carriers, which is why it was found appropriate to address the use of Langmuir monolayers as cell membrane models in this special issue. In the review paper, we elaborate upon the reasons why Langmuir monolayers are good models with the possible control of membrane composition and molecular packing. After describing several experimental methods to characterize the Langmuir monolayers, we discuss selected results from the last five years where monolayers were made to interact with pharmaceutical drugs, emerging pollutants and other biologically-relevant molecules. The challenges to take the field forward are also commented upon.


2021 ◽  
Vol 203 ◽  
pp. 111762
Author(s):  
Mateus D. Maximino ◽  
Carla Y. Silva ◽  
Dalita G.S.M. Cavalcante ◽  
Cibely S. Martin ◽  
Aldo E. Job ◽  
...  

Author(s):  
Vasil Tsanov ◽  
Hristo Tsanov

Background:: This article concentrates on the processes occurring in the medium around the cancer cell and the transfer of glycoside amides through their cell membrane. They are obtained by modification of natural glycoside-nitriles (cyano-glycosides). Hydrolysis of starting materials in the blood medium and associated volume around physiologically active healthy and cancer cells, based on quantum-chemical semi-empirical methods, is considered. Objective:: Based on the fact that the cancer cell feeds primarily on carbohydrates, it is likely that organisms have adapted to take food containing nitrile glycosides and / or modified forms to counteract "external" bioactive activity. Cancers, for their part, have evolved to create conditions around their cells that eliminate their active apoptotic forms. This is far more appropriate for them than changing their entire enzyme regulation to counteract it. In this way, it protects itself and the gene sets and develops according to its instructions. Methods:: Derived pedestal that closely defines the processes of hydrolysis in the blood, the transfer of a specific molecular hydrolytic form to the cancer cell membrane and with the help of time-dependent density-functional quantum- chemical methods, its passage and the processes of re-hydrolysis within the cell itself, to forms causing chemical apoptosis of the cell - independent of its non-genetic set, which seeks to counteract the process. Results:: Used in oncology it could turn a cancer from a lethal to a chronic disease (such as diabetes). The causative agent and conditions for the development of the disease are not eliminated, but the amount of cancer cells could be kept low for a long time (even a lifetime). Conclusion:: The amide derivatives of nitrile glycosides exhibit anti-cancer activity, the cancer cell probably seeks to displace hydrolysis of these derivatives in a direction that would not pass through its cell membrane and the amide- carboxyl derivatives of nitrile glycosides could deliver extremely toxic compounds within the cancer cell itself and thus block and / or permanently damage its normal physiology.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianmin Xiao ◽  
Miao Yan ◽  
Ke Zhou ◽  
Hui Chen ◽  
Zhaowei Xu ◽  
...  

Abstract The cell membrane is widely considered as a promising delivery nanocarrier due to its excellent properties. In this study, self-assembled Pseudomonas geniculate cell membranes were prepared with high yield as drug nanocarriers, and named BMMPs. BMMPs showed excellent biosafety, and could be more efficiently internalized by cancer cells than traditional red cell membrane nanocarriers, indicating that BMMPs could deliver more drug into cancer cells. Subsequently, the BMMPs were coated with nanoselenium (Se), and subsequently loaded with Mn2+ ions and doxorubicin (DOX) to fabricate a functional nanoplatform (BMMP-Mn2+/Se/DOX). Notably, in this nanoplatform, Se nanoparticles activated superoxide dismutase-1 (SOD-1) expression and subsequently up-regulated downstream H2O2 levels. Next, the released Mn2+ ions catalyzed H2O2 to highly toxic hydroxyl radicals (·OH), inducing mitochondrial damage. In addition, the BMMP-Mn2+/Se nanoplatform inhibited glutathione peroxidase 4 (GPX4) expression and further accelerated intracellular reactive oxygen species (ROS) generation. Notably, the BMMP-Mn2+/Se/DOX nanoplatform exhibited increased effectiveness in inducing cancer cell death through mitochondrial and nuclear targeting dual-mode therapeutic pathways and showed negligible toxicity to normal organs. Therefore, this nanoplatform may represent a promising drug delivery system for achieving a safe, effective, and accurate cancer therapeutic plan.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 945
Author(s):  
Qiong Wang ◽  
Ning Hu ◽  
Jincan Lei ◽  
Qiurong Qing ◽  
Jing Huang ◽  
...  

Lipid vesicles, especially giant lipid vesicles (GLVs), are usually adopted as cell membrane models and their preparation has been widely studied. However, the effects of some nonelectrolytes on GLV formation have not been specifically studied so far. In this paper, the effects of the nonelectrolytes, including sucrose, glucose, sorbitol and ethanol, and their coexistence with sodium chloride, on the lipid hydration and GLV formation were investigated. With the hydration method, it was found that the sucrose, glucose and sorbitol showed almost the same effect. Their presence in the medium enhanced the hydrodynamic force on the lipid membranes, promoting the GLV formation. GLV formation was also promoted by the presence of ethanol with ethanol volume fraction in the range of 0 to 20 percent, but higher ethanol content resulted in failure of GLV formation. However, the participation of sodium chloride in sugar solution and ethanol solution stabilized the lipid membranes, suppressing the GLV formation. In addition, the ethanol and the sodium chloride showed the completely opposite effects on lipid hydration. These results could provide some suggestions for the efficient preparation of GLVs.


2015 ◽  
Vol 45 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Gustavo G. Parra ◽  
Galina Borissevitch ◽  
Iouri Borissevitch ◽  
Ana P. Ramos

2018 ◽  
Vol 33 (5) ◽  
pp. 707-724 ◽  
Author(s):  
Wei Ren ◽  
Huizi Sha ◽  
Jing Yan ◽  
Puyuan Wu ◽  
Ju Yang ◽  
...  

Paclitaxel is widely used as a radiosensitizer for various tumors, including esophageal cancer, but its therapeutic effect remains to be improved. In this study, we constructed a novel nano-radiosensitizer, anti-EGFR-iRGD-conjugated (iE)-PRNPs, by conjugating the recombinant protein anti-epidermal growth factor receptor (EGFR)-internalizing arginine-glycine-aspartic (iRGD) to the surface of paclitaxel-loaded red blood cell membrane nanoparticles (PRNPs). The iE-PRNPs were confirmed to possess tumor-targeting, high penetrability, and sustained release properties that free paclitaxel does not possess. Compared with that of paclitaxel, the sensitizer enhancement ratio of iE-PRNPs was significantly increased (1.32-fold and 1.25-fold) in esophageal cancer cells with high and low expression levels of EGFR, respectively. Additionally, compared with that of unmodified PRNPs, the sensitizer enhancement ratio of iE-PRNPs in EGFR-overexpressing esophageal cancer cells was significantly increased (1.27-fold), while that of PRNPs in esophageal cancer cells with a low EGFR expression level increased slightly (1.06-fold). The improved radiosensitization effect was associated with enhanced G2/M arrest, increased reactive oxygen species, and more effective induction of DNA double-strand breaks. In summary, iE-PRNPs appear to be a novel type of radiosensitizer with the potential to overcome the bottleneck of esophageal cancer radiotherapeutic efficacy.


2018 ◽  
Vol 40 (6) ◽  
pp. 805-818 ◽  
Author(s):  
Sharleen V Menezes ◽  
Leyla Fouani ◽  
Michael L H Huang ◽  
Bekesho Geleta ◽  
Sanaz Maleki ◽  
...  

AbstractThe metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), plays multifaceted roles in inhibiting oncogenic signaling and can suppress the epithelial mesenchymal transition (EMT), a key step in metastasis. In this investigation, NDRG1 inhibited the oncogenic effects of transforming growth factor-β (TGF-β) in PANC-1 pancreatic cancer cells, promoting expression and co-localization of E-cadherin and β-catenin at the cell membrane. A similar effect of NDRG1 at supporting E-cadherin and β-catenin co-localization at the cell membrane was also demonstrated for HT-29 colon and CFPAC-1 pancreatic cancer cells. The increase in E-cadherin in PANC-1 cells in response to NDRG1 was mediated by the reduction of three transcriptional repressors of E-cadherin, namely SNAIL, SLUG and ZEB1. To dissect the mechanisms how NDRG1 inhibits nuclear SNAIL, SLUG and ZEB1, we assessed involvement of the nuclear factor-κB (NF-κB) pathway, as its aberrant activation contributes to the EMT. Interestingly, NDRG1 comprehensively inhibited oncogenic NF-κB signaling at multiple sites in this pathway, suppressing NEMO, Iĸĸα and IĸBα expression, as well as reducing the activating phosphorylation of Iĸĸα/β and IĸBα. NDRG1 also reduced the levels, nuclear co-localization and DNA-binding activity of NF-κB p65. Further, Iĸĸα, which integrates NF-κB and TGF-β signaling to upregulate ZEB1, SNAIL and SLUG, was identified as an NDRG1 target. Considering this, therapies targeting NDRG1 could be a new strategy to inhibit metastasis, and as such, we examined novel anticancer agents, namely di-2-pyridylketone thiosemicarbazones, which upregulate NDRG1. These agents downregulated SNAIL, SLUG and ZEB1 in vitro and in vivo using a PANC-1 tumor xenograft model, demonstrating their marked potential.


Membranes ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 141
Author(s):  
Marina Pinheiro ◽  
Heinz Amenitsch ◽  
Salette Reis

This work focuses on the interaction of the novel and representative antituberculosis (anti-TB) drug bedaquiline (BDQ) with different membrane models of eukaryotic and prokaryotic cells. The effect of BDQ on eukaryotic cell membrane models was assessed using liposomes, namely, multilamellar vesicles (MLVs) made of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) and also a mixture of DMPC and cholesterol (CHOL) (8:2 molar ratio). To mimic the prokaryotic cell membrane, 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and 1,1′2,2′-tetra-oleoyl-cardiolipin (TOCL) were chosen. Powerful biophysical techniques were employed, including small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS), to understand the effect of BDQ on the nanostructure of the membrane models. The results showed that BDQ demonstrated a pronounced disordering effect in the bacterial cell membrane models, especially in the membrane model with cardiolipin (CL), while the human cell membrane model with large fractions of neutral phospholipids remained less affected. The membrane models and techniques provide detailed information about different aspects of the drug–membrane interaction, thus offering valuable information to better understand the effect of BDQ on their target membrane-associated enzyme as well as its side effects on the cardiovascular system.


Neoplasia ◽  
2008 ◽  
Vol 10 (9) ◽  
pp. 1014-IN11 ◽  
Author(s):  
Philippe Kischel ◽  
François Guillonneau ◽  
Bruno Dumont ◽  
Akeila Bellahcène ◽  
Verena Stresing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document