Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices

2022 ◽  
Vol 193 ◽  
pp. 106654
Author(s):  
Xuan Zhang ◽  
Hui Sun ◽  
Xingxing Qiao ◽  
Xiaobin Yan ◽  
Meichen Feng ◽  
...  
2021 ◽  
Vol 13 (6) ◽  
pp. 1144
Author(s):  
Mahendra Bhandari ◽  
Shannon Baker ◽  
Jackie C. Rudd ◽  
Amir M. H. Ibrahim ◽  
Anjin Chang ◽  
...  

Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.


2014 ◽  
Vol 60 (No. 11) ◽  
pp. 501-506 ◽  
Author(s):  
J. Kumhálová ◽  
F. Zemek ◽  
P. Novák ◽  
O. Brovkina ◽  
M. Mayerová

Many factors can influence crop yield. One of the most important factors is topography, which can play a crucial role especially in dry years. Plant variability can be monitored by many methods. This paper evaluates the suitability of vegetation indices derived from satellite Landsat 5 TM data in comparison with yield, curvature and topography wetness index over a relatively small field (11.5 ha). Imageries were chosen from the years 2006 and 2010, when oat was grown and from 2005 and 2011, when winter wheat was grown. These images were taken in June in the same growth stage for every crop. It was confirmed that derived indices from Landsat images can be used for comparison with yield and selected topographic attributes and it can explain yield variability, which can be influenced by water distribution during growth stages. Correlation coefficient between moisture stress index and winter wheat yield was &ndash;0.816 in the image acquisition date of 4. 6. 2011.


2019 ◽  
Vol 11 (16) ◽  
pp. 1932 ◽  
Author(s):  
Elena Prudnikova ◽  
Igor Savin ◽  
Gretelerika Vindeker ◽  
Praskovia Grubina ◽  
Ekaterina Shishkonakova ◽  
...  

The spectral reflectance of crop canopy is a spectral mixture, which includes soil background as one of the components. However, as soil is characterized by substantial spatial variability and temporal dynamics, its contribution to the spectral reflectance of crops will also vary. The aim of the research was to determine the impact of soil background on spectral reflectance of crop canopy in visible and near-infrared parts of the spectrum at different stages of crop development and how the soil type factor and the dynamics of soil surface affect vegetation indices calculated for crop assessment. The study was conducted on three test plots with winter wheat located in the Tula region of Russia and occupied by three contrasting types of soil. During field trips, information was collected on the spectral reflectance of winter wheat crop canopy, winter wheat leaves, weeds and open soil surface for three phenological phases (tillering, shooting stage, milky ripeness). The assessment of the soil contribution to the spectral reflectance of winter wheat crop canopy was based on a linear spectral mixture model constructed from field data. This showed that the soil background effect is most pronounced in the regions of 350–500 nm and 620–690 nm. In the shooting stage, the contribution of the soil prevails in the 620–690 nm range of the spectrum and the phase of milky ripeness in the region of 350–500 nm. The minimum contribution at all stages of winter wheat development was observed at wavelengths longer than 750 nm. The degree of soil influence varies with soil type. Analysis of variance showed that normalized difference vegetation index (NDVI) was least affected by soil type factor, the influence of which was about 30%–50%, depending on the stage of winter wheat development. The influence of soil type on soil-adjusted vegetation index (SAVI) and enhanced vegetation index (EVI2) was approximately equal and varied from 60% (shooting phase) to 80% (tillering phase). According to the discriminant analysis, the ability of vegetation indices calculated for winter wheat crop canopy to distinguish between winter wheat crops growing on different soil types changed from the classification accuracy of 94.1% (EVI2) in the tillering stage to 75% (EVI2 and SAVI) in the shooting stage to 82.6% in the milky ripeness stage (EVI2, SAVI, NDVI). The range of the sensitivity of the vegetation indices to the soil background depended on soil type. The indices showed the greatest sensitivity on gray forest soil when the wheat was in the phase of milky ripeness, and on leached chernozem when the wheat was in the tillering phase. The observed patterns can be used to develop vegetation indices, invariant to second-type soil variations caused by soil type factor, which can be applied for the remote assessment of the state of winter wheat crops.


2020 ◽  
Vol 12 (2) ◽  
pp. 249 ◽  
Author(s):  
Stefano Marino ◽  
Arturo Alvino

Timely and accurate estimation of crop yield variability before harvest is crucial in precision farming. This study is aimed to evaluate the ability of cluster analysis based on Vegetation Indices (VIs) that were obtained from UAVs to predict the spatial variability on agronomic traits of ten winter wheat cultivars. Five VIs groups were identified and the ground truth yield-related data were analyzed for clusters validation. The yield data revealed a value of 6.91 t ha−1 for the first cluster with the highest VIs value and a decrease of −12%, −21%, and −27% for the 2nd, 3rd, and 4th clusters; respectively; the 5th cluster; with the lowest VIs value showed the lower yield values (4 t ha−1). Agronomic traits, such as dry biomass, spike numbers, and weight were grouped according to VIs clusters and analyzed and showed the same trends. The analysis of spatial distribution and agronomic data of the ten cultivars within the single clusters highlighted that the most productive varieties showing a greater value of spike weight and numbers and a greater presence of areas with high values of VIs and vice versa the less productive once, though two cultivars showed productions not linked to cluster classification and high data range variability were recorded. Cluster identified by high-resolution UAV vegetation indices can be a valid strategy although its effectiveness is closely linked to the cultivar component and, therefore, requires extensive verification.


2021 ◽  
Vol 256 ◽  
pp. 107076
Author(s):  
Yongcai Zhou ◽  
Congcong Lao ◽  
Yalong Yang ◽  
Zhitao Zhang ◽  
Haiying Chen ◽  
...  

2010 ◽  
Vol 11 (4) ◽  
pp. 335-357 ◽  
Author(s):  
Fei Li ◽  
Yuxin Miao ◽  
Simon D. Hennig ◽  
Martin L. Gnyp ◽  
Xinping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document