The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion

2015 ◽  
Vol 73 ◽  
pp. 132-138 ◽  
Author(s):  
A. Orue ◽  
A. Jauregi ◽  
C. Peña-Rodriguez ◽  
J. Labidi ◽  
A. Eceiza ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (77) ◽  
pp. 73373-73382 ◽  
Author(s):  
Mohammad Tahir Zafar ◽  
Saurindra Nath Maiti ◽  
Anup Kumar Ghosh

The effect of surface treatment of jute fibers on matrix/fiber interface adhesion in PLA/jute fiber biocomposites was explored in terms of mechanical, morphological, thermal and thermo mechanical properties.


2019 ◽  
Vol 14 ◽  
pp. 155892501985944
Author(s):  
Jitlada Boonlertsamut ◽  
Supaphorn Thumsorn ◽  
Toshikazu Umemura ◽  
Hiroyuki Hamada ◽  
Atsushi Sakuma

In this work, the spinning abilities of polyoxymethylene-based core–sheath bicomponent fibers were investigated. Bicomponent fibers were prepared using polyoxymethylene as the core material and poly(lactic acid) blended with polyoxymethylene or pure polyoxymethylene as sheath materials, and their characteristics were investigated and compared. Fiber properties such as elongation are important because they directly relate to the spinning performance during fiber processing. This work reports the impact of the composition designation of the core–sheath bicomponent fibers on the controllable stability of poly(lactic acid) in polyoxymethylene–poly(lactic acid) blends in the fibers, as well as the influence of the core–sheath material on the structure, fiber diameter and distribution, thermal stability, and mechanical properties of the core–sheath bicomponent fibers. It was found that the selection of core and sheath materials affected the structural characteristics of the fibers. The polyoxymethylene core–polyoxymethylene sheath (FV) fiber showed dimensional stability. However, the polyoxymethylene core–poly(lactic acid)/polyoxymethylene sheath (FT30) fiber provided the optimum limit of poly(lactic acid) content for controlling the stable properties of the core–sheath bicomponent fibers.


2018 ◽  
Vol 40 (6) ◽  
pp. 2132-2141 ◽  
Author(s):  
M.E. González‐López ◽  
A.A. Pérez‐Fonseca ◽  
R. Manríquez‐González ◽  
M. Arellano ◽  
D. Rodrigue ◽  
...  

2020 ◽  
pp. 089270572093078
Author(s):  
Ander Orue ◽  
Jon Anakabe ◽  
Ane Miren Zaldua-Huici ◽  
Arantxa Eceiza ◽  
Aitor Arbelaiz

The interest on poly(lactic acid) (PLA)/poly(methyl methacrylate) (PMMA) blends has increased during the last years due to their promising properties. The novelty of the current work focuses on the preparation and characterization of biocomposites based on PLA/PMMA matrix and NaOH-treated sisal fibers. The effect of the addition of treated sisal fibers on the physico-mechanical properties of high polylactide content composites was studied. For this purpose, PLA/PMMA blend (80/20 wt%) was prepared by melt-blending and reinforced with different fiber contents. Although composites showed interesting specific tensile properties, the estimated heat deflection temperature (HDT), that is, the maximum temperature at which a polymer system can be used as a rigid material, barely increased 4°C respect to unreinforced system. After the annealing process, the HDT of the unreinforced polymer blend increased around 25°C, whereas the composites showed an increase of at least 38°C. Nonetheless, the specific tensile strength of composite decreased approximately 48% because the adhesion between fiber and polymer matrix was damaged and cracks were formed during annealing process.


2013 ◽  
Vol 32 (18) ◽  
pp. 1348-1358 ◽  
Author(s):  
Yang Zhou ◽  
Chunguang Long ◽  
Jialiang Huang ◽  
Zhigang Deng ◽  
Taishan Cao

Sign in / Sign up

Export Citation Format

Share Document