Effect of surface treatment of jute fibers on the interfacial adhesion in poly(lactic acid)/jute fiber biocomposites

2016 ◽  
Vol 17 (2) ◽  
pp. 266-274 ◽  
Author(s):  
Mohammad Tahir Zafar ◽  
Saurindra Nath Maiti ◽  
Anup Kumar Ghosh
RSC Advances ◽  
2016 ◽  
Vol 6 (77) ◽  
pp. 73373-73382 ◽  
Author(s):  
Mohammad Tahir Zafar ◽  
Saurindra Nath Maiti ◽  
Anup Kumar Ghosh

The effect of surface treatment of jute fibers on matrix/fiber interface adhesion in PLA/jute fiber biocomposites was explored in terms of mechanical, morphological, thermal and thermo mechanical properties.


2007 ◽  
Vol 1 (1) ◽  
pp. 78-86 ◽  
Author(s):  
U. S. Ishiaku ◽  
X. Y. Yang ◽  
Y. W. Leong ◽  
H. Hamada ◽  
T. Semba ◽  
...  

An attempt was made at increasing both toughness and rigidity by simultaneous toughening and reinforcement. Natural fiber-reinforced biodegradable polyester blend composites were prepared from modified and unmodified biodegradable polyesters blends with surface-treated and untreated jute fibers by melt mixing and subsequent molding. The resulting cross-linked and uncross-linked poly(lactic acid) (PLA)/poly(caprolactone) (PCL)blends were used as the biodegradable polyester matrixes. Alkali treatment was performed as the surface treatments on the jute fiber. This study revealed that alkali treatment of the jute fiber improved the mechanical properties of the composites. The addition of dicumyl peroxide (DCP) also imparted significant changes to the PLA/PCL blend as revealed by thermal and dynamic mechanical analyses. Morphological observation of the DCP modified blend revealed the existence of a third phase at the boundary region of the PLA and PCL phases that could be termed the 'interphase,' while extensive plastic deformation of the tensile fracture surface of the DCP modified blend was observed. The crystalline nature of PLA and PCL are retained in the blend, while the presence of jute fibers interferes with cold crystallization.


2018 ◽  
Vol 40 (6) ◽  
pp. 2132-2141 ◽  
Author(s):  
M.E. González‐López ◽  
A.A. Pérez‐Fonseca ◽  
R. Manríquez‐González ◽  
M. Arellano ◽  
D. Rodrigue ◽  
...  

2013 ◽  
Vol 651 ◽  
pp. 499-504 ◽  
Author(s):  
Na Lu ◽  
Shubhashini Oza

This study investigates the effect of alkali treatment on the thermal degradation and thermal stability of hemp, and hemp reinforced Poly Lactic Acid (PLA) composites. The results indicate that thermal stability of the composites decreases with increase in fiber loading due to the lower thermal stability of hemp compared to PLA matrix. The alkali treated composites have shown higher thermal stability in comparison to untreated hemp-PLA composites due to the increased fiber-matrix bonding.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


2015 ◽  
Vol 73 ◽  
pp. 132-138 ◽  
Author(s):  
A. Orue ◽  
A. Jauregi ◽  
C. Peña-Rodriguez ◽  
J. Labidi ◽  
A. Eceiza ◽  
...  

2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


Sign in / Sign up

Export Citation Format

Share Document