Reducing the raw material usage for room temperature infusible and polymerisable thermoplastic CFRPs through reuse of recycled waste matrix material

2021 ◽  
Vol 216 ◽  
pp. 108877
Author(s):  
Magnus Gebhardt ◽  
Ioannis Manolakis ◽  
Atasi Chatterjee ◽  
Gerhard Kalinka ◽  
Joachim Deubener ◽  
...  
1992 ◽  
Vol 7 (8) ◽  
pp. 1990-1992 ◽  
Author(s):  
A. Wyler ◽  
R.T. Markus ◽  
H.J. Wagner ◽  
B. de Castro

A sort of composite material can be produced from a single kind of natural organic fiber. This has been observed with bovine leather. During the formation process in a die particulated leather fibers were subjected for a period of about 6 min to a pressure of over 100 bar at a processing temperature of between 60 and 200 °C. In this way a portion of these collagenous fibers was plastically deformed and converted into continuous matrix material in which unconverted fibers act as matrix reinforcement. Round, collagenous fibers assumed an angular cross section and became the building blocks of the continuous matrix. This is clearly visible on pictures made with a scanning electron microscope. At a processing temperature of 70 °C and a pressure of 650 bar, applied for 6 min, the maximum compression strength at room temperature is found to be 185 MPa. At these processing parameters Young's modulus is about 2.4 GPa and the bulk density is 1350 kg/m3. Other natural fibers, to be used as organic raw material for the production of composites, are currently under investigation.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1091
Author(s):  
Eva Gerold ◽  
Stefan Luidold ◽  
Helmut Antrekowitsch

The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.


RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 100401-100407 ◽  
Author(s):  
Rajamani Rajmohan ◽  
Subramaniyan Gayathri ◽  
Pothiappan Vairaprakash

In a simple and conceptually designed method for the dehydration of fructose on a solid support, 5-hydroxymethylfurfural (HMF) was synthesized in more than 95% isolated yield from fructose under very mild conditions at room temperature.


2012 ◽  
Vol 174-177 ◽  
pp. 135-139
Author(s):  
Qing Bo Tian ◽  
Li Zong Chen ◽  
Li Na Xu ◽  
Yong Guang Fang

A brick material was prepared with marble wastes as main raw material by pressure forming and water-curing at room temperature. With the increases of the amounts of water additions, the compressive strength increased gradually and obtained a highest value of 34.8MPa in the sample of the ratio of cement: wastes=20:100 at 17.0% water addition, above which the strength had an adverse change and decreased. The addition of glass fiber had small effects on the strength, water absorbing rate and density comparing with that of wood flour. The strengths of sample had changed obviously with the increment of the forming pressures. However, the strength would fall because of the lamination caused by the recovering effects of the wood flour in the sample with replacement of the wood flour to marble wastes, as the forming pressures were higher than 5.0 MPa.


Author(s):  
Eduardo Bonet-Martínez ◽  
Pedro García-Cobo ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

In this research, the feasibility of using bottom ashes generated by the combustion of biomass (olive pruning and pine pruning) as a source of aluminosilicates (OPBA) has been studied, replacing the metakaolin precursor (MK) in different proportions (0, 25, 50, 75 and 100 wt. % substitution) for the synthesis of geopolymers. As alkaline activator an 8 M NaOH solution and a Na2SiO3 have been used. The geopolymers were cured 24 hours in a climatic chamber at 60 ° C in a water-saturated atmosphere, subsequently demoulded and cured at room temperature for 28 days. The results indicated that the incorporation of OPBA waste, which have 19.7 wt. % of Ca, modifies the characteristics of the products formed after alkaline activation. In general terms, the incorporation of increasing amounts of calcium-rich ashes results in geopolymers with higher bulk density. The compressive strength increases with the addition of up to 50 wt. % of OPBA with respect to the control geopolymers, contributing the composition of the residue to the acquisition of a better behaviour mechanical. The results indicate the potential use of these OPBA waste as raw material to produce unconventional cements with 28-day curing strengths greater than 10 MPa, and thermal conductivities less than 0.35 W/mK.


2021 ◽  
Author(s):  
Ramratan Guru ◽  
Anupam Kumar ◽  
Rohit Kumar

This research work has mainly utilized agricultural waste material to make a good-quality composite sheet product of the profitable, pollution free, economical better for farmer and industries. In this study, from corn leaf fibre to reinforced epoxy composite product has been utilized with minimum 35 to maximum range 55% but according to earlier studies, pulp composite material was used in minimum 10 to maximum 27%. Natural fibre-based composites are under intensive study due to their light weight, eco-friendly nature and unique properties. Due to the continuous supply, easy of handling, safety and biodegradability, natural fibre is considered as better alternative in replacing many structural and non-structural components. Corn leaf fibre pulp can be new source of raw material to the industries and can be potential replacement for the expensive and non-renewable synthetic fibre. Corn leaf fibre as the filler material and epoxy as the matrix material were used by changing reinforcement weight fraction. Composites were prepared using hand lay-up techniques by maintaining constant fibre and matrix volume fraction. The sample of the composites thus fabricated was subjected to tensile, impact test for finding the effect of corn husk in different concentrations.


2015 ◽  
Vol 651-653 ◽  
pp. 254-259
Author(s):  
Ángela Mangas ◽  
Maite Santos ◽  
Jose Ignacio Zarazua ◽  
Iñaki Pérez

The forging process plays an important role in the automotive industry thanks to the good mechanical properties of the forged parts. Nowadays, due to the European policy of increasing efficiency in raw material and energy usage, the metal forming sector is demanding new innovative technologies. In this context, rotary extrusion technology is a very promising metal forming alternative to the drilling techniques after forging processes.The presented work is focused on hollow shafts that are usually manufactured using a combination of forming and metal cutting techniques. Deep drilling is the most common technique to obtain internal holes in the automotive hollow parts, but it is an expensive process in terms of material usage. In this framework, rotary extrusion appears as an alternative technology that leads to the reduction of material usage and process time. The tubular shape is formed with the combination of two forming processes: flow forming and backward extrusion.This paper presents the development of a simulation methodology, the process design for a hollow part, the specifications of the experimental unit, and the manufactured prototypes in order to validate the simulation model. Also the incremental process is improved thanks to a sensitivity study of the rollers geometry. Rotary extrusion experiments are done using a modified flow forming machine and 20% material saving is achieved when obtaining the deep hole in comparison to the current deep drilling technology. The process design and numerical model tasks carried out try to provide the industry manufacturers an alternative technology to drilled parts considering the advantages of rotary extrusion parts.


2018 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Kusnadi Kusnadi ◽  
Asep Erik Nugraha ◽  
Wahyudin Wahyudin

Abstract—The company has a problem in warehouse layout arrangement so it will cause some kind of waste in the warehouse such as long searching time when searching spare parts in warehouse, transportation time when bringing material to warehouse or from warehouse to outside warehouse and transportation time at time of arrangement of material to storage shelf. Besides the problem that is noticed is the handling of discontinue material and the completeness of safety for warehouse operators. The purpose of this study can know the whole activity and the kinds of waste that occurred, so that can be done to the improvement of activity in the storage. The method used in measurement using fishbone diagram, and use Tools 5S + Safety. Based on the calculation that utility use of warehouse space owned raw material PT. Nichirin Indonesia is close to 70%. Layout raw material for now 77% of raw material is already used for material storage. After the layout improvements, the utility of raw material usage is reduced to 37.11%. various wastes that occur among others, Waiting time on goods delivery activities from suppliers, Transportation time on activities to bring goods from outside to the receiving area, Waiting time because the material must wait arranged by the admin / operator who works, Transportation time at the time of setting goods to shelf and Searching time on activities to find material for production needs. To reduce the waste that occurred among others, Add material handling in the form of trolley goods and ladder to shorten the transportation time, Make changes to warehouse layout and Provide labeling / coding on each area of the material rackKeywords: Waste; Layout raw material; Fishbone diagram; Tools 5S + Safety


2019 ◽  
Vol 102 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Alberto Mannu ◽  
Monica Ferro ◽  
Maria Enrica Di Pietro ◽  
Andrea Mele

The consideration towards waste cooking oils is changing from hazardous waste to valuable raw material for industrial application. During the last 5 years, some innovative processes based on the employment of recycled waste cooking oil have appeared in the literature. In this review article, the most recent and innovative applications of recycled waste cooking oil are reported and discussed. These include the production of bioplasticizers, the application of chemicals derived from waste cooking oils as energy vectors and the use of waste cooking oils as a solvent for pollutant agents.


Sign in / Sign up

Export Citation Format

Share Document