scholarly journals Functional Application for the Corn Leaf Fibre to Make Reinforced Polymer Composites Sheet

2021 ◽  
Author(s):  
Ramratan Guru ◽  
Anupam Kumar ◽  
Rohit Kumar

This research work has mainly utilized agricultural waste material to make a good-quality composite sheet product of the profitable, pollution free, economical better for farmer and industries. In this study, from corn leaf fibre to reinforced epoxy composite product has been utilized with minimum 35 to maximum range 55% but according to earlier studies, pulp composite material was used in minimum 10 to maximum 27%. Natural fibre-based composites are under intensive study due to their light weight, eco-friendly nature and unique properties. Due to the continuous supply, easy of handling, safety and biodegradability, natural fibre is considered as better alternative in replacing many structural and non-structural components. Corn leaf fibre pulp can be new source of raw material to the industries and can be potential replacement for the expensive and non-renewable synthetic fibre. Corn leaf fibre as the filler material and epoxy as the matrix material were used by changing reinforcement weight fraction. Composites were prepared using hand lay-up techniques by maintaining constant fibre and matrix volume fraction. The sample of the composites thus fabricated was subjected to tensile, impact test for finding the effect of corn husk in different concentrations.

2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


2021 ◽  
Vol 39 (2A) ◽  
pp. 196-205
Author(s):  
Zainab M. Abdul Monem ◽  
Jawad K. Oleiwi ◽  
Qahtan A. Hamad

In the current Research , the heat cured   matrix material powder of PMMA was reinforced with peanut and walnut shells (natural powders) which are chemically treated with 5% (w/v) (NaOH) to improve the matrix bonding (PMMA) before being used as a reinforcing powder and adding to exactly similar averages particle sizes ≤ (53µm), with different weight fractions of (4, 8, and 12 wt.%). The ASTM D638 is used for composite specimens of the tensile test. The results indicated that the Elastic modulus values reached its maximum value at (8 wt.%.) when reinforced with peanut shells particles (1.053Gpa) , while ,the values of tensile strength, elongation percentage at break, decrease as the weight fraction of peanut and walnut shells powder increase and the lowest values is obtained by reinforcing with peanut shells particles to reach their minimum values at (12 wt.%.) where the lowest values of them are (29 MPa, 2.758% ) respectively. The fracture surface morphology of pure PMMA seemed to be homogenous morphology in (SEM) test, whereas the fracture surface morphology of PMMA composite reinforced by (peanut and walnut shells) powders and shows a roughness fracture surface morphology this refer to semi ductile to ductile materials.


1994 ◽  
Vol 3 (2) ◽  
pp. 096369359400300
Author(s):  
Lun X. He ◽  
David K. Hsu ◽  
John P. Basart

In continuous fiber reinforced metal matrix composites, the volume fraction of voids in the matrix material is an important parameter for material property characterization. In analyzing a cross-sectional micrograph of such a composite, the presence of fiber images and voids occurring on the perimeter of fibers complicates the determination of void content. This paper describes image processing steps using mathematical morphology for the extraction of void fraction in a composite.


Author(s):  
Shank S. Kulkarni ◽  
Alireza Tabarraei ◽  
Pratik Ghag

Abstract This work studies the damping property of Nanocomposites through simulating wave propagation using the Finite Element Method (FEM). For this purpose Representative Volume Element (RVE) of the composite material is created using Random Sequential Absorption (RSA) algorithm. Damping property is represented using the wave attenuation coefficient. The matrix material is assumed to be isotropic visco-elastic in nature with randomly dispersed stiff elastic spherical fillers. In order to model mechanical imperfections at the boundary of fillers and matrix, the interphase layer is modeled surrounding the spherical fillers. Determining the thickness and stiffness of this interphase region is a challenging task. Therefore this study aims at investigating the effect of variation in thickness and stiffness values of the interphase region on damping property of whole composite using sensitivity analysis. Two specific cases with a volume fraction of 5 % and 8.6 % are selected for sensitivity analysis. It has been found that both the thickness and stiffness of the interphase region plays an important role in deciding the damping properties of the polymer composite. Value of attenuation coefficient is more sensitive to the thickness of interphase than stiffness and hence it is important to choose the value of thickness correctly for accurate predictions.


2019 ◽  
Vol 28 (4) ◽  
pp. 273-284
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

Rising environmental concerns and depletion of petrochemical resources have resulted in an increased interest in biodegradable natural fiber-reinforced polymer composites. In this research work, jute fiber has been used as a reinforcement and polylactic acid (PLA) as the matrix material to develop jute/PLA green composites with the help of compression molding technique. The effect of fiber volume fraction ranging from 25% to 50% and curing temperature ranging from 160°C to 180°C on different samples were investigated for mechanical properties and water absorption. Results obtained from various tests indicate that with an increase in the fiber volume fraction, tensile and flexural strength increases till 30% fiber fraction, thereafter decreases with further increase in fiber content. Maximum tensile and flexural strength of jute/PLA composites was obtained with 30% fiber volume fraction at 160°C curing temperature. The trend obtained from mechanical properties is further justified through the study of surface morphology using scanning electron microscopy.


2018 ◽  
Vol 188 ◽  
pp. 01016
Author(s):  
Androniki S. Tsiamaki ◽  
Nick K. Anifantis

The research for new materials that can withstand extreme temperatures and present good mechanical behavior is of great importance. The interest is highly focused on the utilization of composites reinforced by nanomaterials. To cope with this goal the present work studies the mechanical response of graphene reinforced nanocomposite structures subjected to temperature changes. A computational finite element model has been developed that accounts for both the reinforcement and the matrix material phases. The model developed is based on both the continuum theory and the molecular mechanics theory, for the simulation of the three different material phases of the composite, respectively, i.e. the matrix, the intermediate transition phase and the reinforcement. Considering this model, the mechanical response of an appropriate representative volume element of the nanocomposite is simulated under various temperature changes. The study involves different types of reinforcement composed from either monolayer or multilayer graphene sheets. Apart from the investigation of the behavior of a nanocomposite with each particular type of the reinforcement, comparisons are also presented between them in order to reveal optimized material combinations. The principal parameters taken into consideration, which contribute also to the mechanical behavior of the nanocomposite, are its size, the sheet multiplicity as well as the volume fraction.


1993 ◽  
Vol 115 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Wei Jun ◽  
Wang Fu-Xing ◽  
Cheng Yin-Qian ◽  
Chen Nan-Ping

Cavitation erosion tests of composite coatings based on vacuum fusion sintered cobalt alloy containing tungsten carbide particles were carried out in 30 percent HCl and 50 percent H2SO4 solutions. The technique used included an ultrasonic vibratory apparatus at 30°C, 25μm amplitude and 30 kHz frequency. Weight loss was measured with an analytical balance and the microstructure was observed with SEM. The test results showed that the cavitation erosion resistance of the composite coatings was increased by increasing the tungsten carbide content. The cavitation erosion is mainly caused by removal of the matrix material. The steady-state erosion rates have a linear relationship with the volume fraction of the tungsten carbide phase.


1996 ◽  
Vol 459 ◽  
Author(s):  
J. H. Lee ◽  
K. Hamada ◽  
K. Miziuuchia ◽  
M. Taya ◽  
K. Inoue

ABSTRACT6061 Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by vacuum hot pressing to investigate the microstructure and mechanical properties. The yield stress of this composite increases with increasing amount of prestrain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. Microstructual observations have revealed that interfacial reactions occur between the matrix and fiber, creating two intermetallic layers. The flow strength of the composite at elevated temperatures is significantly higher than that of the matrix alloy without TiNi fiber.


2021 ◽  
Vol 7 (1) ◽  
pp. 085-090
Author(s):  
Sujita Darmo Darmo ◽  
Rudy Sutanto Sutanto

Fibrous composite materials continue to be researched and developed with the long-term goal of becoming an alternative to metal substitutes. Due to the nature of the fiber reinforced composite material, its high tensile strength, and low density compared to metal. In general, the composition of the composite consists of reinforcing fibers and a matrix as the binding material. The potential of natural fibers as a reinforcing composite material is still being developed and investigated. The research that has been done aims to determine the characteristics of the tensile strength of the composite strengthened with Hibiscus tiliaceust bark powder (HTBP) with alkaline NaOH and KOH treatment. The reinforcing material used is HTBP and the matrix is polyester resin, with volume fraction of 5%, 10% and 20% with an alkaline treatment of 5% NaOH and 5% KOH with immersion for 2 hours, 4 hours, 6 hours and 8 hours. Tensile testing specimens and procedures refer to ASTM D3039 standard. The results of this study showed the highest tensile strength of 34.96 MPa in the alkaline treatment of 5% KOH, soaking time of 8 hours with a volume fraction of 10% and the lowest tensile strength of 21.96 MPa of 5% KOH alkaline treatment, soaking time of 6 hours with a volume fraction of 20%. .with 10% volume fraction of 34.96 MPa and the lowest tensile strength was 5% KOH alkaline treatment at 6 hours immersion with 20% volume fraction.


Sign in / Sign up

Export Citation Format

Share Document