Design of metastructures with quasi-zero dynamic stiffness for vibration isolation

2020 ◽  
Vol 243 ◽  
pp. 112244 ◽  
Author(s):  
Haigui Fan ◽  
Lijuan Yang ◽  
Yuchen Tian ◽  
Zewu Wang
2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Ali Abolfathi ◽  
M. J. Brennan ◽  
T. P. Waters ◽  
B. Tang

Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Yuhu Shan ◽  
Wenjiang Wu ◽  
Xuedong Chen

In the ultraprecision vibration isolation systems, it is desirable for the isolator to have a larger load bearing capacity and a broader isolation bandwidth simultaneously. Generally, pneumatic spring can bear large load and achieve relatively low natural frequency by enlarging its chamber volume. However, the oversized isolator is inconvenient to use and might cause instability. To reduce the size, a miniaturized pneumatic vibration isolator (MPVI) with high-static-low-dynamic stiffness (HSLDS) is developed in this paper. The volume of proposed isolator is minimized by a compact structure design that combines two magnetic rings in parallel with the pneumatic spring. The two magnetic rings are arranged in the repulsive configuration and can be mounted into the chamber to provide the negative stiffness. Then dynamic model of the developed MPVI is built and the isolation performances are analyzed. Finally, experiments on the isolator with and without the magnetic rings are conducted. The final experimental results are consistent with the dynamical model and verify the effectiveness of the developed vibration isolator.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaolei Jiao ◽  
Jinxiu Zhang ◽  
Hongchao Zhao ◽  
Yong Yan

Purpose Bellows-type fluid viscous damper can be used to isolate micro vibration in high-precision satellites. The conventional model cannot describe hydraulic stiffness in the medium- and high-frequency domain of this damper. A simplified analytical model needs to be established to analyze hydraulic stiffness of the damping element in this damper. Design/methodology/approach In this paper, a bellows-type fluid viscous damper is researched, and a simplified model of the damping element in this damper is proposed. Based on this model, the hydraulic stiffness and damping of this damper in the medium- and high-frequency domains are studied, and a comparison is made between the analytical model and a finite element model to verify the analytical model. Findings The results show that when silicone oil has low viscosity, a model that considers the influence of the initial segment of the damping orifice is more reasonable. In the low-frequency domain, hydraulic stiffness increases quickly with frequency and remains stable when the frequency increases to a certain value; the stable stiffness can reach 106 N/m, which is much higher than the main stiffness. Excessive dynamic stiffness in the high-frequency domain will cause poor vibration isolation performance. Adding compensation bellows to the end of the original isolator may be an effective solution. Practical implications A model of the isolator containing the compensation bellows can be derived based on this analytical model. This research can also be used for dynamic modeling and vibration isolation performance analysis of a vibration isolation platform based on this bellows-type fluid viscous damper. Originality/value This paper proposed a simplified model of damping element in bellows-type fluid viscous damper, which can be used to analyze hydraulic stiffness in this damper and it was found that this damper showed stable hydraulic stiffness in the medium- and high-frequency domains.


2016 ◽  
Vol 2 (2) ◽  
pp. e1500778 ◽  
Author(s):  
Christopher B. Churchill ◽  
David W. Shahan ◽  
Sloan P. Smith ◽  
Andrew C. Keefe ◽  
Geoffrey P. McKnight

Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.


2013 ◽  
Vol 423-426 ◽  
pp. 1603-1607
Author(s):  
Yao Guo Xie ◽  
Ping He ◽  
Xian Qiang Qu ◽  
Hong Bin Cui

Through the analysis and comparison of the results of static and dynamic performance testing of a series of laminated steel pieces isolators used in the vibration isolation of warships, in the number and thickness of laminated steel pieces of the same circumstances, laminated steel arc and preload of test samples had a certain impact on the values ​​of static stiffness, dynamic stiffness, damping ratio as well as dynamic and static stiffness ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hao Cao ◽  
Yaopeng Chang ◽  
Jiaxi Zhou ◽  
Xuhui Zhao ◽  
Ling Lu ◽  
...  

The vibrations generated by a three-phase power transformer reduce the comfort of residents and the service life of surrounding equipment. To resolve this tough issue, a quasi-zero-stiffness (QZS) isolator for the transformer is proposed. This paper is devoted to developing a QZS isolator in a simple way for engineering practices. The vertical springs are used to support the heavy weight of the transformer, while the oblique springs are employed to fulfill negative stiffness to neutralize the positive stiffness of the vertical spring. Hence, a combination of the vertical and oblique spring can yield high static but low dynamic stiffness, and the vibration isolation efficiency can be improved substantially. The dynamic analysis for the QZS vibration isolation system is conducted by the harmonic balance method, and the vibration isolation performance is estimated. Finally, the prototype of the QZS isolator is manufactured, and then the vibration isolation performance is tested comparing with the linear isolator under real power loading conditions. The experimental results show that the QZS isolator prominently outperforms the existing linear isolator. This is the first time to devise a QZS isolator for three-phase power transformers with heavy payloads in engineering practices.


2020 ◽  
Vol 11 (1) ◽  
pp. 75-89 ◽  
Author(s):  
Zhanfeng Zhou ◽  
Yongzhuo Gao ◽  
Lining Sun ◽  
Wei Dong ◽  
Zhijiang Du

Abstract. To overcome the limitations of conventional bistable mechanisms, this paper proposes a novel type of bistable mechanism with linear negative stiffness and large in-plane lateral stiffness. By connecting the novel negative-stiffness mechanism in parallel with a positive-stiffness mechanism, a novel quasi-zero stiffness compliant mechanism is developed, which has good axial guidance capability and in-plane lateral anti-interference capability. Analytical models based on a comprehensive elliptic integral solution of bistable mechanism are established and then the stiffness curves of both conventional and novel bistable mechanisms are analyzed. The quasi-zero stiffness characteristic and High-Static-Low-Dynamic-Stiffness characteristic of the novel compliant mechanism are investigated and its application in constant-force mechanism and vibration isolator is discussed. A prototype with adjustable load-carrying capacity is designed and fabricated for experimental study. In the two experiments, the effectiveness of the proposed quasi-zero stiffness mechanism used in the field of constant-force output and vibration isolation is tested.


2021 ◽  
Vol 11 (23) ◽  
pp. 11539
Author(s):  
Cong Hung Nguyen ◽  
Cong Minh Ho ◽  
Kyoung Kwan Ahn

This research introduces an air spring vibration isolator system (ASVIS) based on a negative-stiffness structure (NSS) to improve the vehicle seat’s vibration isolation performance at low excitation frequencies. The main feature of the ASVIS consists of two symmetric bellows-type air springs which were designed on the basis of a negative stiffness mechanism. In addition, a crisscross structure with two straight bars was also used as the supporting legs to provide the nonlinear characteristics with NSS. Moreover, instead of using a vertical mechanical spring, a sleeve-type air spring was employed to provide positive stiffness. As a result, as the weight of the driver varies, the dynamic stiffness of the ASVIS can be easily adjusted and controlled. Next, the effects of the dimension parameters on the nonlinear force and nonlinear stiffness of ASVIS were analyzed. A design process for the ASVIS is provided based on the analytical results in order to achieve high static–low dynamic stiffness. Finally, numerical simulations were performed to evaluate the effectiveness of the ASVIS. The results obtained in this paper show that the values of the seat displacement of the ASVIS with NSS were reduced by 77.16% in comparison with those obtained with the traditional air spring isolator without NSS, which indicates that the design of the ASVIS isolator with NSS allows the effective isolation of vibrations in the low-frequency region.


Sign in / Sign up

Export Citation Format

Share Document