Control of Elastic behavior in smart material integrated shallow spherical composite panel using HOSDT kinematics

2021 ◽  
Vol 260 ◽  
pp. 113504
Author(s):  
Vijay K. Singh ◽  
Jeeoot Singh ◽  
K. Venkata Rao ◽  
Nishant K. Singh ◽  
Chandrasekhar Saran ◽  
...  
2012 ◽  
Vol 557-559 ◽  
pp. 375-380 ◽  
Author(s):  
Woo Tai Jung ◽  
Jong Sup Park ◽  
Seung Han Kim

Following the recent growing interest on long-lasting structures, various researches attempt to exploit Fiber Reinforced Polymer (FRP) to constructions owing to the remarkable reduction of maintenance costs brought by its outstanding resistance to corrosion. However, research dedicated to curved FRP construction material applicable to tunnel or arch bridge is still absent. This study conducts loading tests and finite element analysis in order to examine the behavior of curved FRP-concrete panel produced by pultrusion. The test results reveal that FRP and concrete exhibit linear elastic behavior until the maximum load. The parametric analysis with various FRP sections shows that the behavior of the curved FRP-concrete composite panel depends on the web height of FRP, the spacing of the webs, the length of the flange and the radius of curvature.


Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Author(s):  
Salvatore Benfratello ◽  
Luigi Palizzolo ◽  
Pietro Tabbuso ◽  
Santo Vazzano
Keyword(s):  

2020 ◽  
Vol 2020 (1) ◽  
pp. 34-52
Author(s):  
Rafał Szymański

AbstractThe article is in line with the contemporary interests of companies from the aviation industry. It describes thermoplastic material and inspection techniques used in leading aviation companies. The subject matter of non-destructive testing currently used in aircraft inspections of composite structures is approximated and each of the methods used is briefly described. The characteristics of carbon preimpregnates in thermoplastic matrix are also presented, as well as types of thermoplastic materials and examples of their application in surface ship construction. The advantages, disadvantages and limitations for these materials are listed. The focus was put on the explanation of the ultrasonic method, which is the most commonly used method during the inspection of composite structures at the production and exploitation stage. Describing the ultrasonic method, the focus was put on echo pulse technique and the use of modern Phased Array heads. Incompatibilities most frequently occurring and detected in composite materials with thermosetting and thermoplastic matrix were listed and described. A thermoplastic flat composite panel made of carbon pre-impregnate in a high-temperature matrix (over 300°C), which was the subject of the study, was described. The results of non-destructive testing (ultrasonic method) of thermoplastic panel were presented and conclusions were drawn.


2021 ◽  
Author(s):  
Mujan Seif ◽  
Sean McDaniel ◽  
Matthew Beck ◽  
Alexandre Martin

2006 ◽  
Vol 91 (4) ◽  
pp. 568-578 ◽  
Author(s):  
G. D. Gatta ◽  
F. Nestola ◽  
T. B. Ballaran

2019 ◽  
Vol 11 (19) ◽  
pp. 5283 ◽  
Author(s):  
Gowida ◽  
Moussa ◽  
Elkatatny ◽  
Ali

Rock mechanical properties play a key role in the optimization process of engineering practices in the oil and gas industry so that better field development decisions can be made. Estimation of these properties is central in well placement, drilling programs, and well completion design. The elastic behavior of rocks can be studied by determining two main parameters: Young’s modulus and Poisson’s ratio. Accurate determination of the Poisson’s ratio helps to estimate the in-situ horizontal stresses and in turn, avoid many critical problems which interrupt drilling operations, such as pipe sticking and wellbore instability issues. Accurate Poisson’s ratio values can be experimentally determined using retrieved core samples under simulated in-situ downhole conditions. However, this technique is time-consuming and economically ineffective, requiring the development of a more effective technique. This study has developed a new generalized model to estimate static Poisson’s ratio values of sandstone rocks using a supervised artificial neural network (ANN). The developed ANN model uses well log data such as bulk density and sonic log as the input parameters to target static Poisson’s ratio values as outputs. Subsequently, the developed ANN model was transformed into a more practical and easier to use white-box mode using an ANN-based empirical equation. Core data (692 data points) and their corresponding petrophysical data were used to train and test the ANN model. The self-adaptive differential evolution (SADE) algorithm was used to fine-tune the parameters of the ANN model to obtain the most accurate results in terms of the highest correlation coefficient (R) and the lowest mean absolute percentage error (MAPE). The results obtained from the optimized ANN model show an excellent agreement with the laboratory measured static Poisson’s ratio, confirming the high accuracy of the developed model. A comparison of the developed ANN-based empirical correlation with the previously developed approaches demonstrates the superiority of the developed correlation in predicting static Poisson’s ratio values with the highest R and the lowest MAPE. The developed correlation performs in a manner far superior to other approaches when validated against unseen field data. The developed ANN-based mathematical model can be used as a robust tool to estimate static Poisson’s ratio without the need to run the ANN model.


Sign in / Sign up

Export Citation Format

Share Document