Effect of machining processes on the damage response and surface quality of open hole hybrid carbon/flax composites: an experimental study

2022 ◽  
pp. 115244
Author(s):  
Braedon Hoekstra ◽  
Atefeh Shekarian ◽  
Kamal Kolasangiani ◽  
Donatus C.D. Oguamanam ◽  
Redouane Zitoune ◽  
...  
2012 ◽  
Vol 15 (4) ◽  
pp. 340-346 ◽  
Author(s):  
Feng Huang ◽  
Ruirun Chen ◽  
Jingjie Guo ◽  
Hongsheng Ding ◽  
Yanqing Su ◽  
...  

2014 ◽  
Vol 1077 ◽  
pp. 61-65
Author(s):  
Pei Yan ◽  
Xiang Su ◽  
Gang Wang ◽  
Yi Ming Rong

As the development of new materials and high speed machining, cutting fluid becomes more and more important because of its functions of cooling, lubrication, corrosion protection and cleaning. The main purposes of cutting fluid are decreasing temperature, reducing friction, extending tool life and improving machining efficiency. In precision machining, high machined surface integrity is the most important. In this paper, a preliminary experimental study on effect of two different cutting fluids on milled surface quality of iron-base superalloy was taken. The surface morphology, roughness, micro hardness and residual stress of the machined surface were investigated. The results showed that the material properties and geometric characteristics of the machined surface were significantly affected by cutting fluid conditions. The effect of cutting fluid on machined surface quality and service performance will become an important research direction. This paper also suggests the main contents of the further research on effect of cutting fluids on machined surface.


2011 ◽  
Vol 223 ◽  
pp. 931-939
Author(s):  
Rodrigo Panosso Zeilmann ◽  
Gerson Luiz Nicola ◽  
Fernando Moreira Bordin ◽  
Tiago Vacaro ◽  
Mariana Czarnobay Zanotto

The electrical discharge machining (EDM) is a process widely used in machining of complex geometries and hardened materials, conditions that often are not met by conventional machining processes. In EDM the electrode reproduces its image or geometry on the part and this image is obtained by chip removing process, which is given by high frequency electrical discharges, causing the melting and vaporization of electrically conductive materials. Due to this mechanism of material removal, the surface is subjected to high thermal loads, which heavily influences the surface quality of obtained parts. For the characterization of these surfaces must be considered the surface topography and the metallurgical changes of the subsurface layer, since both characteristics influence the functionality of the machined parts. In addition, several variables related to the EDM process have influence on the characteristics of the generated surface. This work presents a study of the influence of EDM process on the surface quality of square cavities. It was evaluated different regions of the cavities, such as side wall, bottom and corners. The results showed significant differences between the analyzed regions.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769354 ◽  
Author(s):  
Dao-hui Xiang ◽  
Zhong-yun Liu ◽  
Zhi-kun Zhou ◽  
Yun-long Yao

The kinematic characteristics, grinding force, surface quality of workpiece surface, and wear of abrasive particles were studied by theoretical analysis and experimental study on the single cubic boron nitride abrasive particles under ultrasonic-assisted high-speed grinding. Under the condition of the same grinding parameters, the motion characteristics and the grinding forces of the two machining modes of general grinding and ultrasonic-assisted grinding are compared and analyzed. Research shows that the ultrasonic vibration is applied in the common external circular grinding on grinding particle movement characteristics changed obviously, grinding particle trajectory of variable length, cutting groove width wider, thereby improving the grinding efficiency and the grinding removal rate; ultrasonic assisted under high speed grinding, the grinding force is higher than that of common grinding force is small, efficiency of grinding under ultrasonic processing mode is much higher than ordinary grinding, the surface quality of the workpiece has improved markedly.


Author(s):  
Y. D. Gong ◽  
Y. Sun ◽  
X. L. Wen ◽  
Y. G. Zhou ◽  
Y. Liu

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2417
Author(s):  
Zhen Meng ◽  
Jing Ni ◽  
Yu Shi ◽  
Chuan-Yu Wu ◽  
Xiang-Qi Liu

In order to improve the keyway broaching process and verify the feasibility of vibration-assisted broaching process, an experimental study on a novel hydraulic vibration assisted broaching (HVAB) system with double-valve electro-hydraulic exciter (DVEHE) is proposed in this paper. The performances of HVAB at different excitation frequencies were compared from three aspects: (a) the cutting force under the different vibration frequencies, (b) the surface roughness of the workpiece, and (c) the flank face wear of the tool. For precision on-line measurement of larger broaching forces, four piezoelectric sensors were fixed on the broaching machine. The experimental results show that HVAB can effectively improve the performance of the broaching process, approximately reduce the broaching force by as much as 9.7% compared to conventional broaching (CB) and improve the surface quality of workpiece. Some explanations are offered to support the observations.


2019 ◽  
Vol 19 (2) ◽  
pp. 29-36
Author(s):  
Yufrizal A ◽  
Eko Indrawan ◽  
Nofri Helmi ◽  
Abdul Aziz ◽  
Yoga Amanda Putra

The surface quality of turning can be influenced by several factors such as determining the spindle rotation speed, determining cutting speed (cutting speed), cut angle. the purpose of this study was to compare the level of surface roughness in the mild steel ST 37 on lathe process. Every surface of the workpiece that undergoes a machining process will experience varying degrees of roughness. This research is an experimental study that compares the level of surface roughness of material material Mild Steel ST 37. Material that is done with a length of 70 mm, and turned into a diameter of 20 mm using 3 kinds of cutting angles and 3 kinds of spindle rotation speed. Measuring the surface roughness of the workpiece, namely surface tester mitutoyo SJ-201P. The results of this study can be concluded that the spindle rotation speed of 740 rpm with 80˚ cutting angle produces a smoother surface that is (∑Rap) = 5.76 μm or in the roughness class N9 while the spindle rotation speed is 440 rpm with 80 potong cutting angle produces a surface coarse (∑Rap) = 11.47 μm with N10 surface roughness class.


2018 ◽  
Vol 522 (1) ◽  
pp. 9-19
Author(s):  
Erliang Liu ◽  
Hongwei Xing ◽  
Xudong Wei ◽  
Ning Wang ◽  
Jin Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document