A review on cement-based materials used in steel structures as fireproof coating

Author(s):  
Xiaomeng Ma ◽  
Jinlong Pan ◽  
Jingming Cai ◽  
Zhuoyang Zhang ◽  
Jinsheng Han
ACS Omega ◽  
2021 ◽  
Author(s):  
Jianhua Fu ◽  
Dengke Wang ◽  
Xuelong Li ◽  
Zhiming Wang ◽  
Zhengjie Shang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2232
Author(s):  
Huiwen Wan ◽  
Zhangyin Hu ◽  
Gang Liu ◽  
Jiadong Xiao

Electrical properties are one of the essential parameters of cement-based materials used in suspension porcelain insulators. This paper studied the electrical properties of aluminate cement adhesives (ACA) containing silica fume (SF), as well as their compressive strength and porosity. The results indicated that the addition of silica fume improved the resistivity of ACA under a saturated state (relative humidity is 50%). This was mainly attributed to the decrease of the ACA’s pore connectivity due to the SF’s filling effect. However, the early compressive strength of ACA was slightly reduced by the addition of SF. Under an unsaturated state, the ACA’s resistivity without the SF gradually exceeded that with the SF at the extension of drying time. The nuclear magnetic resonance (NMR) results indicated that the addition of SF content increased the ACA’s porosity; for the tiny pores especially, (the size less than 25 nm), this increased by 3.4%. Meanwhile, the addition of SF increased the tortuosity of the ACA’s conductive channels, which could improve its resistivity. Therefore, SF is recommended to be used in cement-based adhesives on insulators to lower the cost and improve the resistivity.


2012 ◽  
Vol 504-506 ◽  
pp. 901-906 ◽  
Author(s):  
Antti Määttä ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Kari Mäntyjärvi ◽  
Jussi A. Karjalainen

The use of ultra-high-strength steels (UHS) has become more and more popular within last decade. Higher strength levels provide lighter and more robust steel structures, but UHS-steels are also more sensitive to surface defects (e.g. scratches). Practically this means that the critical crack size decreases when the strength increases. The aim of the study was to study if the formula of critical crack size is valid on forming processes of UHS-steels. Surface cracks with different depths were created by scratching the surface of the sheet by machining center. Effect of the scratch depth was determined by bending the specimens to 90 degrees. Bents were then visually compared and classified by the minimum achieved bending radius. Test materials used were direct quenched (DQ) bainitic-martensitic UHS steels (YS/TS 960/1000 and 1100/1250). Results from the bending tests were compared to the calculated values given by the formula of critical crack size.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Tomáš Ficker

In the concrete foundations, materials come into contact with bedrocks. The surfaces of bedrocks are often covered by sharp protrusions called asperities. Although geotechnical engineers have developed a reliable theory for assessing the mechanical stability of rocky terrains, the stability of transition zones between concrete and sharp asperities remains unsolved. Due to the large pressures that exist in these transition zones, the invasive influence of sharp asperities on the integrity of the concrete raises a question about possible changes of the mechanical properties of concrete materials used in foundations. These circumstances have inspired experiments in which metallic needles of various lengths have been embedded into cement-based materials to assess the influence of the needles on the compressive strength. This influence has been quantified, and the critical limits identifying the changes of material integrity have been determined. It has been conjectured that sharp rock asperities or needle-like rods of steel reinforcement in concrete may cause similar changes of material integrity as the metallic needles used in the experiments performed.


2016 ◽  
Vol 881 ◽  
pp. 341-345
Author(s):  
Valeria Bennack ◽  
L.V.O. Dalla Valentina ◽  
Marilena Valadares Folgueras

Economic and environmental issues are directly related to industrial processes which, not only employ natural resources but also generate by-products that may impact the environment. In order to achieve sustainable development, reducing the use of natural resources and lowering cost through adequate destination of waste becomes a crucial issue. The aim of this paper is to analyze the suitability of reusing waste (wood ash) resulting from the combustion process at wood product industries for manufacturing cement based materials used in civil engineering. The material assessed is ash from the combustion process of a wood product industry. In this study, physical and chemical properties such as grain size, mineral and chemical composition of this by-product were characterized. Thermal analysis and X-ray diffraction techniques were used for this purpose. Preliminary results show the suitability of using the waste (wood ash) for manufacturing cement based materials


2015 ◽  
Vol 1095 ◽  
pp. 662-665
Author(s):  
Yi Chao Zhang ◽  
Zhi Feng Li

The water-based ultra-thin fireproof coating for steel structures was prepared by using polyvinyl acetate emulsion as binder, using flame retardant composed of ammonium polyphosphate (APP) , pentaerythritol (PTH) and melamine (MEL) as basic flame retardant system, using titanium dioxide as inorganic filler, then use expandable graphite (EG) to improve the thickness and compactness of char layer. The experimental results show that the coating has the best properties when the content of polyvinyl acetate emulsion is 32 % and the flame retardant is 38 % by mass, furthermore if added 4 % EG, the properties of coating would be better.


2021 ◽  
Vol 71 (344) ◽  
pp. e267
Author(s):  
G. Sotorrío ◽  
J. Alonso ◽  
N.O.E. Olsson ◽  
J.A. Tenorio

One of the major challenges facing 3D printing for construction is the technological suitability, ‘printability’, of the materials used. These cement-based materials differ from those used in other sectors, which has a series of conditioning factors that are the object of the present analysis. This article first reviews the definition of the term ‘printability’ and its constituent stages. Those stages condition the requirements to be met by cement-based materials, whether designed for other uses or developed ad hoc, and therefore the tests applicable to determine their aptitude for use in additive manufacturing for construction. That is followed by a review of the standardised tests presently in place for mortars and concretes that can be used to verify a material’s compliance with such requirements. The paper concludes with a recommendation on the advisability of developing a standard test or suite of tests to ascertain printability.


Sign in / Sign up

Export Citation Format

Share Document