Efficient classification model of web news documents using machine learning algorithms for accurate information

2020 ◽  
Vol 98 ◽  
pp. 102006
Author(s):  
Aos Mulahuwaish ◽  
Kevin Gyorick ◽  
Kayhan Zrar Ghafoor ◽  
Halgurd S. Maghdid ◽  
Danda B. Rawat
2021 ◽  
Author(s):  
Marc Raphael ◽  
Michael Robitaille ◽  
Jeff Byers ◽  
Joseph Christodoulides

Abstract Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm’s initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery’s optical modality, magnification or cell type.


2021 ◽  
Author(s):  
Michael C. Robitaille ◽  
Jeff M. Byers ◽  
Joseph A. Christodoulides ◽  
Marc P. Raphael

Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm's initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery's optical modality, magnification or cell type.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fatin Nabihah Jais ◽  
Mohd Zulfaezal Che Azemin ◽  
Mohd Radzi Hilmi ◽  
Mohd Izzuddin Mohd Tamrin ◽  
Khairidzan Mohd Kamal

Introduction. Early detection of visual symptoms in pterygium patients is crucial as the progression of the disease can cause visual disruption and contribute to visual impairment. Best-corrected visual acuity (BCVA) and corneal astigmatism influence the degree of visual impairment due to direct invasion of fibrovascular tissue into the cornea. However, there were different characteristics of pterygium used to evaluate the severity of visual impairment, including fleshiness, size, length, and redness. The innovation of machine learning technology in visual science may contribute to developing a highly accurate predictive analytics model of BCVA outcomes in postsurgery pterygium patients. Aim. To produce an accurate model of BCVA changes of postpterygium surgery according to its morphological characteristics by using the machine learning technique. Methodology. A retrospective of the secondary dataset of 93 samples of pterygium patients with different pterygium attributes was used and imported into four different machine learning algorithms in RapidMiner software to predict the improvement of BCVA after pterygium surgery. Results. The performance of four machine learning techniques were evaluated, and it showed the support vector machine (SVM) model had the highest average accuracy (94.44% ± 5.86%), specificity (100%), and sensitivity (92.14% ± 8.33%). Conclusion. Machine learning algorithms can produce a highly accurate postsurgery classification model of BCVA changes using pterygium characteristics.


2020 ◽  
Vol 12 (6) ◽  
pp. 99-116
Author(s):  
Mousa Al-Akhras ◽  
Mohammed Alawairdhi ◽  
Ali Alkoudari ◽  
Samer Atawneh

Internet of things (IoT) has led to several security threats and challenges within society. Regardless of the benefits that it has brought with it to the society, IoT could compromise the security and privacy of individuals and companies at various levels. Denial of Service (DoS) and Distributed DoS (DDoS) attacks, among others, are the most common attack types that face the IoT networks. To counter such attacks, companies should implement an efficient classification/detection model, which is not an easy task. This paper proposes a classification model to examine the effectiveness of several machine-learning algorithms, namely, Random Forest (RF), k-Nearest Neighbors (KNN), and Naïve Bayes. The machine learning algorithms are used to detect attacks on the UNSW-NB15 benchmark dataset. The UNSW-NB15 contains normal network traffic and malicious traffic instants. The experimental results reveal that RF and KNN classifiers give the best performance with an accuracy of 100% (without noise injection) and 99% (with 10% noise filtering), while the Naïve Bayes classifier gives the worst performance with an accuracy of 95.35% and 82.77 without noise and with 10% noise, respectively. Other evaluation matrices, such as precision and recall, also show the effectiveness of RF and KNN classifiers over Naïve Bayes.


2021 ◽  
Author(s):  
Bangaru Kamatchi S ◽  
R. Parvathi

Abstract The agriculture yield mostly depends on climate factors. Any information associated with climatic factors will help farmers in foreordained farming. Choosing a right crop at right time is most important to get proper yield. To help the farmers in decision making process a classification model is built by considering the agro climatic parameters of a crop like temperature, relative humidity, type of soil, soil pH and crop duration and a recommendation system is built based on three factors namely crop, type of crop and the districts. Predicting the districts is the novel approach in which crop pattern of 33 districts of Tamilnadu is marked and based on that classification model is built. Thorough analysis of machine learning algorithms incorporating pre-processing, data augmentation and comparison of optimizers and activation function of ANN. Log loss metric is used to validate the models. The results shows that artificial neural network is the best predictive model for classification of crops crop type and district based on agrometeorological climatic condition. The accuracy of artificial neural network model is compared with five different machine learning algorithms to analyse the performance.


2019 ◽  
Vol 143 (8) ◽  
pp. 990-998 ◽  
Author(s):  
Min Yu ◽  
Lindsay A. L. Bazydlo ◽  
David E. Bruns ◽  
James H. Harrison

Context.— Turnaround time and productivity of clinical mass spectrometric (MS) testing are hampered by time-consuming manual review of the analytical quality of MS data before release of patient results. Objective.— To determine whether a classification model created by using standard machine learning algorithms can verify analytically acceptable MS results and thereby reduce manual review requirements. Design.— We obtained retrospective data from gas chromatography–MS analyses of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in 1267 urine samples. The data for each sample had been labeled previously as either analytically unacceptable or acceptable by manual review. The dataset was randomly split into training and test sets (848 and 419 samples, respectively), maintaining equal proportions of acceptable (90%) and unacceptable (10%) results in each set. We used stratified 10-fold cross-validation in assessing the abilities of 6 supervised machine learning algorithms to distinguish unacceptable from acceptable assay results in the training dataset. The classifier with the highest recall was used to build a final model, and its performance was evaluated against the test dataset. Results.— In comparison testing of the 6 classifiers, a model based on the Support Vector Machines algorithm yielded the highest recall and acceptable precision. After optimization, this model correctly identified all unacceptable results in the test dataset (100% recall) with a precision of 81%. Conclusions.— Automated data review identified all analytically unacceptable assays in the test dataset, while reducing the manual review requirement by about 87%. This automation strategy can focus manual review only on assays likely to be problematic, allowing improved throughput and turnaround time without reducing quality.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Senerath Mudalige Don Alexis Chinthaka Jayatilake ◽  
Gamage Upeksha Ganegoda

In the present day, there are many diseases which need to be identified at their early stages to start relevant treatments. If not, they could be uncurable and deadly. Due to this reason, there is a need of analysing complex medical data, medical reports, and medical images at a lesser time but with greater accuracy. There are even some instances where certain abnormalities cannot be directly recognized by humans. In healthcare for computational decision making, machine learning approaches are being used in these types of situations where a crucial data analysis needs to be performed on medical data to reveal hidden relationships or abnormalities which are not visible to humans. Implementing algorithms to perform such tasks itself is difficult, but what makes it even more challenging is to increase the accuracy of the algorithm while decreasing the required time for the algorithm to execute. In the early days, processing of large amount of medical data was an important task which resulted in machine learning being adapted in the biological domain. Since this happened, the biology and biomedical fields have been reaching higher levels by exploring more knowledge and identifying relationships which were never observed before. Reaching to its peak now the concern is being diverted towards treating patients not only based on the type of disease but also their genetics, which is known as precision medicine. Modifications in machine learning algorithms are being performed and tested daily to improve the performance of the algorithms in analysing and presenting more accurate information. In the healthcare field, starting from information extraction from medical documents until the prediction or diagnosis of a disease, machine learning has been involved. Medical imaging is a section that was greatly improved with the integration of machine learning algorithms to the field of computational biology. Nowadays, many disease diagnoses are being performed by medical image processing using machine learning algorithms. In addition, patient care, resource allocation, and research on treatments for various diseases are also being performed using machine learning-based computational decision making. Throughout this paper, various machine learning algorithms and approaches that are being used for decision making in the healthcare sector will be discussed along with the involvement of machine learning in healthcare applications in the current context. With the explored knowledge, it was evident that neural network-based deep learning methods have performed extremely well in the field of computational biology with the support of the high processing power of modern sophisticated computers and are being extensively applied because of their high predicting accuracy and reliability. When giving concern towards the big picture by combining the observations, it is noticeable that computational biology and biomedicine-based decision making in healthcare have now become dependent on machine learning algorithms, and thus they cannot be separated from the field of artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document