Cold atmospheric plasma (CAP) as a promising therapeutic option for mild to moderate acne vulgaris: Clinical and non-invasive evaluation of two cases

2020 ◽  
Vol 19-20 ◽  
pp. 100110
Author(s):  
Dr. Arisi Mariachiara ◽  
Venturuzzo Anna ◽  
Gelmetti Alessandra ◽  
Guasco Pisani Edoardo ◽  
Bassissi Stefania ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Christian Scharf ◽  
Christine Eymann ◽  
Philipp Emicke ◽  
Jörg Bernhardt ◽  
Martin Wilhelm ◽  
...  

The promising potential of cold atmospheric plasma (CAP) treatment as a new therapeutic option in the field of medicine, particularly in Otorhinolaryngology and Respiratory medicine, demands primarily the assessment of potential risks and the prevention of any direct and future cell damages. Consequently, the application of a special intensity of CAP that is well tolerated by cells and tissues is of particular interest. Although improvement of wound healing by CAP treatment has been described, the underlying mechanisms and the molecular influences on human tissues are so far only partially characterized. In this study, human S9 bronchial epithelial cells were treated with cold plasma of atmospheric pressure plasma jet that was previously proven to accelerate the wound healing in a clinically relevant extent. We studied the detailed cellular adaptation reactions for a specified plasma intensity by time-resolved comparative proteome analyses of plasma treated vs. nontreated cells to elucidate the mechanisms of the observed improved wound healing and to define potential biomarkers and networks for the evaluation of plasma effects on human epithelial cells. K-means cluster analysis and time-related analysis of fold-change factors indicated concordantly clear differences between the short-term (up to 1 h) and long-term (24-72 h) adaptation reactions. Thus, the induction of Nrf2-mediated oxidative and endoplasmic reticulum stress response, PPAR-alpha/RXR activation as well as production of peroxisomes, and prevention of apoptosis already during the first hour after CAP treatment are important cell strategies to overcome oxidative stress and to protect and maintain cell integrity and especially microtubule dynamics. After resolving of stress, when stress adaptation was accomplished, the cells seem to start again with proliferation and cellular assembly and organization. The observed strategies and identification of marker proteins might explain the accelerated wound healing induced by CAP, and these indicators might be subsequently used for risk assessment and quality management of application of nonthermal plasma sources in clinical settings.


2021 ◽  
Vol 22 (21) ◽  
pp. 11728
Author(s):  
Dayun Yan ◽  
Qihui Wang ◽  
Xiaoliang Yao ◽  
Alisa Malyavko ◽  
Michael Keidar

In this study, we demonstrated that the widely used cold atmospheric plasma (CAP) jet could significantly inhibit the growth of melanoma cells using a contactless treatment method, The flow rate of helium gas was a key operational parameter to modulate electromagnetic (EM) effect on melanoma cells. Metal sheets with different sizes could be used as a strategy to control the strength of EM effect. More attractive, the EM effect from CAP could penetrate glass/polystyrene barriers as thick as 7 mm. All these discoveries presented the profound non-invasive nature of a physically based CAP treatment, which provided a solid foundation for CAP-based cutaneous/subcutaneous tumor therapy.


2021 ◽  
Vol 11 (23) ◽  
pp. 11181
Author(s):  
Sigrid Karrer ◽  
Mark Berneburg ◽  
Florian Zeman ◽  
Michael Koller ◽  
Karolina Müller

The increase in antibiotic resistance requires effective non-antibiotic therapies for acne. Cold atmospheric plasma (CAP) inactivates bacteria and improves wound healing, but its effect on acne has not been investigated. The objective of this controlled split-face study was to assess safety and efficacy of CAP in moderate acne. One side of the face received 8–10 treatments with cold helium plasma within 4–6 weeks; follow-up was two and four weeks thereafter. Acne lesions were counted, followed by global acne severity ratings. Of the 34 patients included, 29 completed the study. No serious adverse events occurred. The two facial sides did not significantly differ in the number of inflammatory and non-inflammatory lesions. An interaction effect of number and type of treatment was found for inflammatory lesions. Lesion reduction after 10 treatments was significantly higher on the treated than on the untreated side. Percentage of patients reporting improved aesthetics was higher for the treated than for the untreated side after treatment completion (79% vs. 45%) and at the two- (72% vs. 45%) and four-week follow-up (79% vs. 52%). In conclusion, CAP was safe with excellent tolerability, showed moderate reduction in acne lesions and led to higher patient-based ratings of aesthetics than non-treatment.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1280 ◽  
Author(s):  
Javier Vaquero ◽  
Florian Judée ◽  
Marie Vallette ◽  
Henri Decauchy ◽  
Ander Arbelaiz ◽  
...  

Through the last decade, cold atmospheric plasma (CAP) has emerged as an innovative therapeutic option for cancer treatment. Recently, we have set up a potentially safe atmospheric pressure plasma jet device that displays antitumoral properties in a preclinical model of cholangiocarcinoma (CCA), a rare and very aggressive cancer emerging from the biliary tree with few efficient treatments. In the present study, we aimed at deciphering the molecular mechanisms underlying the antitumor effects of CAP towards CCA in both an in vivo and in vitro context. In vivo, using subcutaneous xenografts into immunocompromised mice, CAP treatment of CCA induced DNA lesions and tumor cell apoptosis, as evaluated by 8-oxoguanine and cleaved caspase-3 immunohistochemistry, respectively. The analysis of the tumor microenvironment showed changes in markers related to macrophage polarization. In vitro, the incubation of CCA cells with CAP-treated culture media (i.e., plasma-activated media, PAM) led to a dose response decrease in cell survival. At molecular level, CAP treatment induced double-strand DNA breaks, followed by an increased phosphorylation and activation of the cell cycle master regulators CHK1 and p53, leading to cell cycle arrest and cell death by apoptosis. In conclusion, CAP is a novel therapeutic option to consider for CCA in the future.


1978 ◽  
Vol 17 (01) ◽  
pp. 16-23 ◽  
Author(s):  
Ch. L. Zollikofer ◽  
J. Wewerka ◽  
Th. Frank

35 patients with scintigraphically silent thyroid regions without palpable cold nodules were further evaluated by ultrasonography. In 33 cases the sonographic diagnosis was confirmed by other examinations or the clinical course. 2 cases were misinterpreted right at the beginning of our series.The use of ultrasonography in evaluating silent thyroid regions in the totally decompensated autonomous adenoma, in unilateral thyroid aplasia, thyroiditis and hyperthyroidism is shown to be a reliable and valuable supplement to the clinical and radioisotopic evaluation procedures. When differentiating the totally decompensated autonomous adenoma from unilateral thyroid aplasia a stimulation test need not be performed in most cases. Suspected thyroiditis can be confirmed in a simple way. Being a non-invasive evaluation procedure, ultrasonography should be used before performing a needle biopsy.


2012 ◽  
Vol 153 (40) ◽  
pp. 1570-1577 ◽  
Author(s):  
Attila Nemes ◽  
Anita Kalapos ◽  
Péter Domsik ◽  
Tamás Forster

Three-dimensional speckle-tracking echocardiography is a new cardiac imaging methodology, which allows three-dimensional non-invasive evaluation of the myocardial mechanics. The aim of this review is to present this new tool emphasizing its diagnostic potentials and demonstrating its limitations, as well. Orv. Hetil., 2012, 153, 1570–1577.


Sign in / Sign up

Export Citation Format

Share Document