scholarly journals Intergenerational protein deficiency and adolescent reproductive function of subsequent female generations (F1 and F2) in rat model

Author(s):  
Nosarieme O. Abey ◽  
Osaretin A.T. Ebuehi ◽  
Ngozi O.A. Imaga
Author(s):  
Abey Nosarieme

The maintenance of fertility status critically depends on the proper functioning of the ovary, which is also a reflect of normal development of ovarian follicles. Malnourished males and females have been scientifically proven to form a major infertile population in developing countries. Proper nutrition therefore forms a baseline for functional reproductive makeup. This study seeks to assess the mRNA expression level of ovarian inhibin alpha (IHA), Estrogen receptor (ERα), Aromatase, CCAAT-enhancer binding protein alpha (CEBPA) and Fibroblast Growth Factor Receptor 1 (FGFR1) in the F 0 and F 1 rat progeny subjected to perinatal dietary protein deficiency. Rats in four (4) groups were fed different grade of protein deficient diets (5%, 10%, 21% protein diets and rat chow). Total RNA was extracted from the snap frozen ovary excised from the different rat groups, checked for quality, converted the cDNA and RT-qPCR was used to quantify amount of each mRNA expressed in the tissue. Result shows severe alteration in the level of expression of some of the key genes assessed essential for sustenance of reproductive health from one generation to another. Inhibin alpha was downregulated while CEBPA was upregulated in 5%PD groups at F 1 and F 2, ERα was downregulated only at first generation but normalized in the second generation. Aromatase in the 10% group was upregulated at F 1 and F 2 generation, while in the 5%PD, it was downregulated only at F 2. These modulations mediate the effects of dietary protein deficiency on the ovarian and reproductive function from one generation to another.


2021 ◽  
Author(s):  
Nosarieme Omoregie Abey ◽  
Osaretin Albert Taiwo Ebuehi ◽  
Ngozi Awa Imaga

Abstract Background: The ability to reproduce efficiently is an important characteristic that has evolved through natural selection. Nutrition can modulate reproductive activities at different levels, its effect on nutrition is therefore complex and less predictable. This study aims at investigating the underlying effect of persistent dietary protein deficiency during early life on reproductive parameters of subsequent (F1 and F2) generations.Method: Rats in group of four (4) were fed daily, with different ration of protein diet (PD) formulated as: 21% protein diet, 10%protein diet, 5%protein diet and control diet (rat chow, containing 16-18% protein). They were fed ad libitum before mating, throughout gestation and lactation, and next generations were weaned to the maternal diet. Reproductive function analysis (which include; gestation and pubertal hormonal profiling, onset of puberty, oestrus cyclicity, sexual response) and morphometric analysis of the ovarian structure were carried out to assess associated consequences.Results: showed significant reduction in the fertility index as a consequence of altered reproductive function in the protein deficient models at P≤ 0.05. Low protein diet posed suboptimal intrauterine condition, which was linked to increased prenatal morbidity and mortality, lowered birthweight delayed onset of puberty, induced cycle irregularity, altered follicular maturation and endocrine dysfunction in the protein deficient groups. Reproductive status of an individual female organism critically depends on the maintenance of ovarian structure and function that has been associated with the hypothalamic pituitary-gonadal axis, hormonal events and sexual maturity.Conclusion: There is therefore an association between persistent early life protein deficiency and reproductive response which mechanistically involves life-long changes in key ovarian cytoarchitecture and function.


2021 ◽  
pp. 096452842110566
Author(s):  
Feifei Zhang ◽  
Tong Ma ◽  
Xiaoyu Tong ◽  
Yanjun Liu ◽  
Peng Cui ◽  
...  

Background: Polycystic ovary syndrome (PCOS) affects 8%–15% of reproductive-age women and is associated with reproductive disorders, abdominal obesity, hyperinsulinemia, insulin resistance, type 2 diabetes, and cardiovascular diseases. Acupuncture, as a traditional physical therapy method, could affect various metabolic disorders such as obesity, hyperplasia, gout, and cardiovascular and cerebrovascular diseases in clinical practice. Moreover, electroacupuncture (EA) has been shown to decrease body weight in rats with PCOS; however, the mechanism of weight loss and the relationship between adipose tissue and gut microbiota remain unclear. Objective: To explore the effect and mechanism of EA on white and brown adipose tissues and gut microbiota, and its follow-up effect on reproductive function, in a rat model of PCOS. Methods: Daily EA treatment was administered at ST29 and SP6 in a dihydrotestosterone (DHT)-induced PCOS-like rat model (PCOS + EA group). Effects of EA on in vivo and in vitro adipose volume and weight, organ weight coefficients, body weight, hormonal profiles, and estrous cyclicity were measured, and compared with untreated PCOS model rats (PCOS group) and healthy rats (control group). Microbial DNA was extracted from the fecal samples to analyze group abundance and diversity. Results: EA improved estrous cyclicity, decreased body weight, decreased visceral and subcutaneous fat content, and increased brown adipose tissue weight. EA also normalized serum DHT and progesterone levels and improved glucose tolerance. There were few significant differences in the composition or diversity of the gut microbiota between control, PCOS, and PCOS + EA groups, except for the relative abundances of Tenericutes at the phylum level and Prevotella_9 at the genus level, which were significantly different in the PCOS group before and after EA treatment. Both are important microflora, strongly related to body weight. Conclusion: EA regulated the metabolic disorders and improved reproductive function in this PCOS-like rat model by adjusting visceral fat and brown fat, as well as intestinal flora.


Author(s):  
Abey Nosarieme ◽  
Ebuehi Osaretin

Maternal and child health has been linked to the development of the human conceptus which absolutely depends on adequate and balanced supplies of key nutrients; therefore, an important element of reproductive health and neurodevelopment is improved nutritional status in women of child bearing age. Defect in neurodevelopment of newborn costs the mother both psychological and emotional stress, also reproductive health failure has been a significant public health concern, because it leads to disability in couples and individuals who bear the burden, there is therefore an urgent need to understand the underlying of birth malformation in order to channel possible solution. This study therefore sought to investigate the reproductive and neurodevelopmental defects in rat models of F 0 , F 1 and F 2 generations after modeled dietary protein deficiency, establishing the consequential mechanistic association. Rats in four groups were fed different ration of protein diet (PD); 21% PD, 10%PD, 5%PD and control diet (Normal rat chow), from adolescent through to gestation and Lactation, and next generations were weaned to the maternal diet group. Reproductive function and fertility index (including oestrus cyclicity, sexual response, histopathology and hormone profiling), as well as Neurobehavioral studies to include; Learning Memory tests (Y-maze, Moriz water maze, Elevated Plus Maze and Open field test) and Brain oxidative stress. Result shows significant reduction in the %fertility index and the overall reproductive function in the protein deficient models (5%PD; 35%2.5 10%PD; 66%2.2 as compared to 21%PD; 88.4%0.8, and control 85.8%1.3) which persist in subsequent generation. There was also observable transgenerational cognitive impairment reflected in: The Y-maze (Spatial memory: 5%; 8.3%, 10%; 9.25% 21%; 57.6% and control 55.95%), Morizz water Maze (5%: 26.5; 10%;21, 21%;5 and control; 6, as escape latency time), there was a significant decrease in the antioxidant capacity of the brain, especially in the 5%PD models. Brain serotonin and dopamine levels respectively; 5%: 2.70.3; 36.25 0.57., 10%; 2.90.3; 17.75 0.94., 21%;7.80.9; 7.951.1., and control; 70.2; 11.550.7. were significantly perturbed in the test model brains. Therefore, Protein deficiency is capable of causing a dysfunction in the reproductive health of models, by altering the oestrus cyclicity which is partly dependent on the changes in hormonal events, the brain redox status and neurotransmitter system. Therefore, persistent perinatal exposure to protein malnutrition increases the risk of cognitive defect and other brain disorders in subsequent generations. There was an evidence of metabolic reset in the malnourished group; this may be due in part to epigenetic regulation of transposable element.


Author(s):  
Delbert E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
T. Fast ◽  
J. Stevenson ◽  
...  

Space Lab 3 (SL-3) was flown on Shuttle Challenger providing an opportunity to measure the effect of spaceflight on rat testes. Cannon developed the idea that organisms react to unfavorable conditions with highly integrated metabolic activities. Selye summarized the manifestations of physiological response to nonspecific stress and he pointed out that atrophy of the gonads always occurred. Many papers have been published showing the effects of social interaction, crowding, peck order and confinement. Flickinger showed delayed testicular development in subordinate roosters influenced by group numbers, social rank and social status. Christian reported increasing population size in mice resulted in adrenal hypertrophy, inhibition of reproductive maturation and loss of reproductive function in adults. Sex organ weights also declined. Two male dogs were flown on Cosmos 110 for 22 days. Fedorova reported an increase of 30 to 70% atypical spermatozoa consisting of tail curling and/or the absence of a tail.


Sign in / Sign up

Export Citation Format

Share Document