scholarly journals Perinatal Exposure to low Protein Diets Perturbs some Ovarian Genes Critical to Reproductive Health from One Generation to Another

Author(s):  
Abey Nosarieme

The maintenance of fertility status critically depends on the proper functioning of the ovary, which is also a reflect of normal development of ovarian follicles. Malnourished males and females have been scientifically proven to form a major infertile population in developing countries. Proper nutrition therefore forms a baseline for functional reproductive makeup. This study seeks to assess the mRNA expression level of ovarian inhibin alpha (IHA), Estrogen receptor (ERα), Aromatase, CCAAT-enhancer binding protein alpha (CEBPA) and Fibroblast Growth Factor Receptor 1 (FGFR1) in the F 0 and F 1 rat progeny subjected to perinatal dietary protein deficiency. Rats in four (4) groups were fed different grade of protein deficient diets (5%, 10%, 21% protein diets and rat chow). Total RNA was extracted from the snap frozen ovary excised from the different rat groups, checked for quality, converted the cDNA and RT-qPCR was used to quantify amount of each mRNA expressed in the tissue. Result shows severe alteration in the level of expression of some of the key genes assessed essential for sustenance of reproductive health from one generation to another. Inhibin alpha was downregulated while CEBPA was upregulated in 5%PD groups at F 1 and F 2, ERα was downregulated only at first generation but normalized in the second generation. Aromatase in the 10% group was upregulated at F 1 and F 2 generation, while in the 5%PD, it was downregulated only at F 2. These modulations mediate the effects of dietary protein deficiency on the ovarian and reproductive function from one generation to another.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


Author(s):  
Abey Nosarieme ◽  
Ebuehi Osaretin

Maternal and child health has been linked to the development of the human conceptus which absolutely depends on adequate and balanced supplies of key nutrients; therefore, an important element of reproductive health and neurodevelopment is improved nutritional status in women of child bearing age. Defect in neurodevelopment of newborn costs the mother both psychological and emotional stress, also reproductive health failure has been a significant public health concern, because it leads to disability in couples and individuals who bear the burden, there is therefore an urgent need to understand the underlying of birth malformation in order to channel possible solution. This study therefore sought to investigate the reproductive and neurodevelopmental defects in rat models of F 0 , F 1 and F 2 generations after modeled dietary protein deficiency, establishing the consequential mechanistic association. Rats in four groups were fed different ration of protein diet (PD); 21% PD, 10%PD, 5%PD and control diet (Normal rat chow), from adolescent through to gestation and Lactation, and next generations were weaned to the maternal diet group. Reproductive function and fertility index (including oestrus cyclicity, sexual response, histopathology and hormone profiling), as well as Neurobehavioral studies to include; Learning Memory tests (Y-maze, Moriz water maze, Elevated Plus Maze and Open field test) and Brain oxidative stress. Result shows significant reduction in the %fertility index and the overall reproductive function in the protein deficient models (5%PD; 35%2.5 10%PD; 66%2.2 as compared to 21%PD; 88.4%0.8, and control 85.8%1.3) which persist in subsequent generation. There was also observable transgenerational cognitive impairment reflected in: The Y-maze (Spatial memory: 5%; 8.3%, 10%; 9.25% 21%; 57.6% and control 55.95%), Morizz water Maze (5%: 26.5; 10%;21, 21%;5 and control; 6, as escape latency time), there was a significant decrease in the antioxidant capacity of the brain, especially in the 5%PD models. Brain serotonin and dopamine levels respectively; 5%: 2.70.3; 36.25 0.57., 10%; 2.90.3; 17.75 0.94., 21%;7.80.9; 7.951.1., and control; 70.2; 11.550.7. were significantly perturbed in the test model brains. Therefore, Protein deficiency is capable of causing a dysfunction in the reproductive health of models, by altering the oestrus cyclicity which is partly dependent on the changes in hormonal events, the brain redox status and neurotransmitter system. Therefore, persistent perinatal exposure to protein malnutrition increases the risk of cognitive defect and other brain disorders in subsequent generations. There was an evidence of metabolic reset in the malnourished group; this may be due in part to epigenetic regulation of transposable element.


1982 ◽  
Vol 62 (4) ◽  
pp. 1193-1197 ◽  
Author(s):  
P. A. THACKER ◽  
J. P. BOWLAND ◽  
L. P. MILLIGAN ◽  
E. WELTZIEN

The kinetics of urea recycling were determined in six female crossbred pigs utilizing a radioisotope dilution technique. The experimental animals were fed three times daily 500 g of a corn-soybean meal diet formulated to contain 8.4, 15.8 or 24.7% crude protein. Nitrogen digestibility, urinary nitrogen excretion, total nitrogen excretion and retained nitrogen were highest on the 24.7% protein diet and decreased with decreasing dietary protein. Urea pool size, entry rate and excretion rate were also highest on the 24.7% protein diet and decreased with decreasing protein intake. Expressed as a percentage of the total entry rate, a significantly higher percentage of urea was recycled in pigs fed the low protein diets compared with those fed a higher protein diet. Key words: Pig, urea, recycling, kinetics, protein


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dong Wang ◽  
Guoshun Chen ◽  
Lili Song ◽  
Mingjie Chai ◽  
Yongfeng Wang ◽  
...  

Diets containing different crude protein levels (16%, 14%, and 12%) were created to feed Bamei pigs in order to study the effect of these compositions on intestinal colonies. Therefore, 27 healthy Bamei pigs of similar weight ( 20.99   kg ± 0.16   kg ) were selected and randomly divided into three groups for microbial diversity analysis. The results of this study show that microbial diversities and abundances in Bamei pig jejunum and caecum samples after feeding with different dietary protein levels were significantly different. Dietary crude protein level exerted no significant effect on the Shannon index for cecum microbes in these pigs, while Simpson, ACE, and Chao1 indices for group I were all significantly higher than those of either the control group or group II ( P < 0.05 ). Indeed, data show that microbial diversities and abundances in the 14% protein level group were higher than those in either the 16% or 12% groups. Dominant bacteria present in jejunum and cecum samples given low-protein diets were members of the phyla Firmicutes and Bacteroidetes. Data show that as dietary crude protein level decreases, representatives of the microbial flora genus Lactobacillus in jejunum and cecum samples gradually increases. Values for the KEGG functional prediction of microbial flora at different dietary protein levels also show that genes of jejunum and cecum microorganisms were mainly enriched in the “metabolism” pathway and indicate that low protein diets increase intestinal metabolic activity. Therefore, we recommend that Bamei pig dietary protein levels are reduced 2% from their existing level of 16% crude protein. We also suggest that essential synthetic amino acids (AA) are added to optimize this ideal protein model as this will increase intestinal flora diversity in these pigs and enhance health. These changes will have a positive effect in promoting the healthy growth of Bamei pigs.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3801
Author(s):  
George A. Bray ◽  
Leanne M. Redman ◽  
Jennifer Rood ◽  
Lilian de Jonge ◽  
Steven R. Smith

Background: During overeating, a low protein diet slowed the rate of weight gain and increased the energy cost of the added weight, suggesting that low protein diets reduced energy efficiency. The Protein Overfeeding (PROOF) study explored the metabolic changes to low and high protein diets, and this sub-study examined the changes in body composition and blood lipids when eating high and low protein diets during overeating. Methods: Twenty-three healthy volunteers (M = 14; F = 9) participated in an 8-week, parallel arm study where they were overfed by ~40% with diets containing 5% (LPD = low protein diet), 15% (NPD = normal protein diet), or 25% (HPD = high protein diet) protein. Dual energy X-ray absorptiometry (DXA) and computer tomography (CT) were used to quantify whole body and abdominal fat and intrahepatic lipid, respectively. Metabolites were measured by standard methods. Results: Protein intake and fat intake were inversely related since carbohydrate intake was fixed. Although overeating the LPD diet was associated with a significant increase in high density lipoprotein (HDL)-cholesterol (p < 0.001) and free fatty acids (p = 0.034), and a significant decrease in fat free mass (p < 0.0001) and liver density (p = 0.038), statistical models showed that dietary protein was the main contributor to changes in fat free mass (p = 0.0040), whereas dietary fat was the major predictor of changes in HDL-cholesterol (p = 0.014), free fatty acids (p = 0.0016), and liver fat (p = 0.0007). Conclusions: During 8 weeks of overeating, the level of dietary protein intake was positively related to the change in fat free mass, but not to the change in HDL-cholesterol, free fatty acids, and liver fat which were, in contrast, related to the intake of dietary fat.


1975 ◽  
Vol 228 (4) ◽  
pp. 1284-1287 ◽  
Author(s):  
PM Leung ◽  
BA Horwitz

Infusion of bacterial pyrogen (Priomen) was accompanied by an increase in body temperature, an increase in heat production, and a decrease in the voluntary food intake ofrats fed high-as well as low-protein diets. The magnitude of this pyrogen-induced depression of food intake was comparable for both diets. However, in rats fed high-protein diets, this decrease was additive to that normally seen following administration of such diets. These data indicate that the control of food intake cannot be explained in terms of a behavioral the more regulatory response.


1980 ◽  
Vol 58 (3) ◽  
pp. 231-236 ◽  
Author(s):  
Daya R. Varma

Influence of dietary protein on the disposition and metabolism of phenylbutazone was investigated in male rats fed ad libitum a 21% (control) or a 5% (low) protein diet for 3 weeks. Phenylbutazone and its metabolites were assayed by high-pressure liquid chromatography. Dietary protein deficiency was associated with a decrease in the conversion of phenylbutazone into oxyphenbutazone by 9000 × g liver supernatant of protein-deficient rats. Also, dietary protein deficiency was associated with a decrease in the urinary excretion of various metabolites of phenylbutazone, namely, oxyphenbutazone γ-hydroxyphenylbutazone, β-hydroxyphenylbutazone, p,γ-dihydroxyphenylbutazone, and an unknown metabolite (not identified). Pretreatment with phenobarbitone or phenylbutazone led to an increase in the hepatic metabolism of phenylbutazone and the urinary excretion of various metabolites in both groups of animals. Within 5 min after an injection of phenylbutazone, plasma contained oxyphenbutazone; the area under the curve of oxyphenbutazone was significantly greater in protein-deficient rats than in controls possibly due to a greater accumulation. It is concluded that dietary protein deficiency is associated with a decrease in the disposition and metabolism of phenylbutazone in rats.


1980 ◽  
Vol 58 (5) ◽  
pp. 564-567 ◽  
Author(s):  
D. R. Varma

Myocardial effects and pharmacokinetics of digoxin and ouabain were studied in male albino guinea pigs fed ad libitum either a 21% (control) or a 5% (low) protein diet for 4 weeks. Dietary protein deficiency was associated with a decrease in body weight gain, ventricular weight, total plasma proteins and plasma albumin, hepatic total and microsomal proteins, cytochrome P-450, and protein:DNA ratios; serum potassium was slightly but insignificantly decreased. No significant differences were found in the following experiments with digoxin and ouabain in control and protein-deficient animals: inotropic effects of ouabain on isolated papillary muscles and left atria; uptake of [3H]ouabain by isolated papillary muscles; ventricular fibriliatory doses of digoxin and ouabain in anesthetized animals and the concentrations of digoxin in plasma and papillary muscles at the onset of ventricular fibrillation in these animals; plasma half-life of digoxin in unanesthetized guinea pigs. It is concluded that although dietary protein deficiency influences several physiological and biochemical parameters it does not alter the myocardial effects and pharmacokinetics of digoxin and ouabain in guinea pigs.


Sign in / Sign up

Export Citation Format

Share Document