scholarly journals Dietary Protein Deficiency in Early Life of F1 and F2 Generations of Sprague Dawley Rats Disrupts the Reproductive Function

Author(s):  
Nosarieme Omoregie Abey ◽  
Osaretin Albert Taiwo Ebuehi ◽  
Ngozi Awa Imaga

Abstract Background: The ability to reproduce efficiently is an important characteristic that has evolved through natural selection. Nutrition can modulate reproductive activities at different levels, its effect on nutrition is therefore complex and less predictable. This study aims at investigating the underlying effect of persistent dietary protein deficiency during early life on reproductive parameters of subsequent (F1 and F2) generations.Method: Rats in group of four (4) were fed daily, with different ration of protein diet (PD) formulated as: 21% protein diet, 10%protein diet, 5%protein diet and control diet (rat chow, containing 16-18% protein). They were fed ad libitum before mating, throughout gestation and lactation, and next generations were weaned to the maternal diet. Reproductive function analysis (which include; gestation and pubertal hormonal profiling, onset of puberty, oestrus cyclicity, sexual response) and morphometric analysis of the ovarian structure were carried out to assess associated consequences.Results: showed significant reduction in the fertility index as a consequence of altered reproductive function in the protein deficient models at P≤ 0.05. Low protein diet posed suboptimal intrauterine condition, which was linked to increased prenatal morbidity and mortality, lowered birthweight delayed onset of puberty, induced cycle irregularity, altered follicular maturation and endocrine dysfunction in the protein deficient groups. Reproductive status of an individual female organism critically depends on the maintenance of ovarian structure and function that has been associated with the hypothalamic pituitary-gonadal axis, hormonal events and sexual maturity.Conclusion: There is therefore an association between persistent early life protein deficiency and reproductive response which mechanistically involves life-long changes in key ovarian cytoarchitecture and function.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


1996 ◽  
Vol 270 (6) ◽  
pp. R1189-R1196 ◽  
Author(s):  
A. Okiyama ◽  
K. Torii ◽  
M. G. Tordoff

Four studies were conducted to assess the effect of a low-protein diet on NaCl intake. Young rats fed either control (20% casein) or low-protein (5% casein) high-carbohydrate (CHO) diet were allowed to drink either water alone or water and 300 mM NaCl. Relative to rats fed control diet, rats fed the low-protein diet progressively increased NaCl intake so that, despite lower food and water intakes, they drank 180% more NaCl during the last 3 days of the 21-day test. Additional studies found that rats fed low-protein diet always maintained positive sodium balance, were neither sodium depleted nor hypovolemic, and had normal plasma renin activity and aldosterone concentrations. The elevated NaCl intake was not secondary to calcium deficiency and was unaffected by mineral supplementation of the protein-deficient diet. Increases in the diet's CH and/or fat content incidental to decreases in its protein content influenced, but could not completely account for, the effect of protein deficiency on NaCl intake. We conclude that protein deficiency is the primary cause of the elevated NaCl preference produced by being fed a low-protein diet and that a novel physiological mechanism underlies this behavior.


2008 ◽  
Vol 20 (9) ◽  
pp. 37
Author(s):  
K. A. Walters ◽  
M. Jimenez ◽  
L. A. Salamonsen ◽  
D. J. Handelsman

Recently the androgen receptor (AR) has been shown definitively to play a role in female reproduction. We generated a homozygous AR−/− female mouse using Cre/LoxP recombination for an in-frame excision of exon 3, encoding the second zinc finger essential for DNA-binding, while allowing production of an exon 3 deleted mutant AR protein which is nonfunctional as a nuclear transcription factor. AR−/− females were sub-fertile due primarily to ovulatory dysfunction (1). However, the mechanism(s) of the observed sub-fertility remains to be fully defined. To evaluate the role of AR in uterine function we carried out a morphological and function analysis of the AR−/− uterus. Uterine weights did not differ, however, AR−/− females exhibited a significant increase in uterine horn length (P < 0.01), and a significant reduction in uterine diameter (P < 0.01), total uterine area (P < 0.01), endometrial area (P < 0.05) and myometrial area (P < 0.01), indicating a role for genomic AR-mediated actions in physiological uterine growth and development. Furthermore, during late pregnancy AR−/− females had significantly fewer implantation sites (P < 0.01), fetuses present in utero (P < 0.05) and a lower serum progesterone concentration (P < 0.01). In spite of these findings, AR−/− females had normal gestational length, parturition and pup weights, as well as similar pre- and post implantation losses compared with AR+/+ females. Therefore, although AR is not essential for normal uterine reproductive function, disrupting genomic AR signalling in the uterus leads to dysfunctional uterine development which may have important long-term functional consequences for hormone dependent uterine disorders such as endometrial hyperplasia and cancer. (1) K. A. Walters et al. Endocrinology 148, 3674 (2007).


2021 ◽  
pp. 1-29
Author(s):  
Mingzhu Cai ◽  
Jie Zhang ◽  
Hong Chen ◽  
Yuan-Xiang Pan

Abstract This study investigates the mechanism by which maternal protein restriction induces hepatic autophagy-related gene expression in the offspring of rats. Pregnant Sprague-Dawley rats were fed either a control diet (C, 18% energy from protein) or a low-protein diet (LP, 8.5% energy from protein) during gestation, followed by the control diet during lactation and post-weaning. Liver tissue was collected from the offspring at postnatal day 38 and divided into four groups according to sex and maternal diet (F-C, F-LP, M-C, and M-LP) for further analysis. Autophagy-related mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. In addition, chromatin immunoprecipitation (ChIP) was performed to investigate the interactions between transcription factors and autophagy-related genes. Protein levels of p-eIF2a and ATF4 were increased only in the female offspring born to dams fed the LP diet. Correlatively, the mRNA expression of hepatic autophagy-related genes including Map1lc3b, P62/Sqstm1, Becn1, Atg3, Atg7, and Atg10 was significantly greater in the F-LP group than in the F-C group. Furthermore, ChIP results showed greater ATF4 and C/EBP homology protein (CHOP) binding at the regions of a set of autophagy-related genes in the F-LP group than in the F-C group. Our data demonstrated that a maternal LP diet transcriptionally programmed hepatic autophagy-related gene expression only in female rat offspring. This transcriptional program involved the activation of the eIF2α/ATF4 pathway and intricate regulation by transcription factors ATF4 and CHOP.


2013 ◽  
Vol 5 (1) ◽  
pp. 2-15 ◽  
Author(s):  
S. Chadio ◽  
B. Kotsampasi

Accumulating evidence suggest that the concept of programming can also be applied to reproductive development and function, representing an ever expanding research area. Recently issues such as peri- or even preconceptional nutrition, transgenerational effects and underlying mechanisms have received considerable attention. The present chapter presents the existed evidence and reviews the available data from numerous animal and human studies on the effects of early life nutritional environment on adult reproductive function. Specific outcomes depend on the severity, duration and stage of development when nutritional perturbations are imposed, while sex-specific effects are also manifested. Apart from undernutrition, effects of relative overnutrition as well as the complex interactions between pre- and postnatal nutrition is of high importance, especially in the context of our days obesity epidemic. Mechanisms underlying reproductive programming are yet unclear, but may include a role for epigenetic modifications. Epigenetic modulation of critical genes involved in the control of reproductive function and potential intergenerational effects represent an exciting area of interdisciplinary research toward the development of new nutritional approaches during pre- and postnatal periods to ensure reproductive health in later life.


Author(s):  
Abey Nosarieme

The maintenance of fertility status critically depends on the proper functioning of the ovary, which is also a reflect of normal development of ovarian follicles. Malnourished males and females have been scientifically proven to form a major infertile population in developing countries. Proper nutrition therefore forms a baseline for functional reproductive makeup. This study seeks to assess the mRNA expression level of ovarian inhibin alpha (IHA), Estrogen receptor (ERα), Aromatase, CCAAT-enhancer binding protein alpha (CEBPA) and Fibroblast Growth Factor Receptor 1 (FGFR1) in the F 0 and F 1 rat progeny subjected to perinatal dietary protein deficiency. Rats in four (4) groups were fed different grade of protein deficient diets (5%, 10%, 21% protein diets and rat chow). Total RNA was extracted from the snap frozen ovary excised from the different rat groups, checked for quality, converted the cDNA and RT-qPCR was used to quantify amount of each mRNA expressed in the tissue. Result shows severe alteration in the level of expression of some of the key genes assessed essential for sustenance of reproductive health from one generation to another. Inhibin alpha was downregulated while CEBPA was upregulated in 5%PD groups at F 1 and F 2, ERα was downregulated only at first generation but normalized in the second generation. Aromatase in the 10% group was upregulated at F 1 and F 2 generation, while in the 5%PD, it was downregulated only at F 2. These modulations mediate the effects of dietary protein deficiency on the ovarian and reproductive function from one generation to another.


1983 ◽  
Vol 65 (4) ◽  
pp. 399-406 ◽  
Author(s):  
A. M. El-Nahas ◽  
H. Paraskevakou ◽  
S. Zoob ◽  
A. J. Rees ◽  
D. J. Evans

1. We have examined the effect of a low protein diet on the development of glomerular sclerosis and progressive renal failure after subtotal nephrectomies in rats. 2. Two groups of male Sprague-Dawley rats were studied after five-sixths nephrectomy; group 1 were maintained on a normal diet (13.5 g day−1 kg−1 body weight) and group 2 were fed with a low protein diet (6 g day−1 kg−1 body weight). 3. Rats maintained on a low protein diet survived for longer, and had significantly less glomerular sclerosis and significantly greater glomerular filtration rates when the experiment ended after 7 months. 4. We conclude that dietary protein influences favourably the development of glomerular scarring and renal failure after subtotal nephrectomy in rats.


2002 ◽  
Vol 103 (6) ◽  
pp. 633-639 ◽  
Author(s):  
Alan A. JACKSON ◽  
Rebecca L. DUNN ◽  
Michael C. MARCHAND ◽  
Simon C. LANGLEY-EVANS

When rat dams consume a diet low in protein during pregnancy, their offspring develop high blood pressure. On a low-protein diet, the endogenous formation of the amino acid glycine is thought to become constrained. Glycine may become conditionally essential, as its rate of endogenous formation is inadequate to meet metabolic needs, and may be limiting for the normal development of the fetus. In the present study, five groups of Wistar rats were provided during pregnancy with one of five diets: a control diet containing 18% (w/w) casein (CON), a low-protein diet containing 9% casein (MLP), or the low-protein diet supplemented with 3% glycine (MLPG), alanine (MLPA) or urea (MLPU). The offspring were weaned on to standard laboratory chow, and blood pressure was measured at 4 weeks of age. Blood pressure was significantly increased in the MLP, MLPA and MLPU groups compared with the CON group, but for the MLPG group blood pressure was not significantly different from CON. Compared with the CON group, body weight was significantly reduced for the MLP, MLPA and MLPG groups, but for the MLPU group body weight was not different from CON. These data show that different forms of non-essential dietary nitrogen, when consumed during pregnancy, exert different effects upon the growth and function of the offspring. The availability of glycine appears to be of critical importance for normal cardiovascular development.


1980 ◽  
Vol 238 (4) ◽  
pp. E358-E363
Author(s):  
J. K. Tews ◽  
A. E. Harper

Distribution of alpha-aminoisobutyric acid (AIB) in the rat was modified by food, dietary protein, and glucagon. In rats last fed 24 h before AIB injection, AIB clearance from plasma and uptake into liver were greater in rats fed a high-protein diet (60% casein) than in rats fed the control diet (18% casein); AIB clearance from plasma and uptake into muscle were lowered by a low-protein diet (6% casein). Feeding rats lowered clearance of AIB from plasma in low- and high-protein groups. Distribution ratios (AIB concentration in tissue water/AIB in plasma) were low in all tissues but liver during the first 7 h after feeding high protein when compared to the control values; ratios were low in muscle, heart, and kidney after feeding low protein. Maximum ratios occurred at different times for different tissues; the time was delayed by the high-protein diet in all tissues but liver. Glucagon increased all ratios in rats fed the control or low-protein diets, with the smallest changes occurring in liver and muscle from low-protein rats.


Sign in / Sign up

Export Citation Format

Share Document