scholarly journals Titanite: A potential solidus barometer for granitic magma systems

2019 ◽  
Vol 351 (8) ◽  
pp. 551-561 ◽  
Author(s):  
Saskia Erdmann ◽  
Rucheng Wang ◽  
Fangfang Huang ◽  
Bruno Scaillet ◽  
Kai Zhao ◽  
...  
Keyword(s):  
Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 765
Author(s):  
Yuichi Morishita ◽  
Yoshiro Nishio

The Takatori hypothermal tin–tungsten vein deposit is composed of wolframite-bearing quartz veins with minor cassiterite, chalcopyrite, pyrite, and lithium-bearing muscovite and sericite. Several wolframite rims show replacement textures, which are assumed to form by iron replacement with manganese postdating the wolframite precipitation. Lithium isotope ratios (δ7Li) of Li-bearing muscovite from the Takatori veins range from −3.1‰ to −2.1‰, and such Li-bearing muscovites are proven to occur at the early stage of mineralization. Fine-grained sericite with lower Li content shows relatively higher δ7Li values, and might have precipitated after the main ore forming event. The maximum oxygen isotope equilibrium temperature of quartz–muscovite pairs is 460 °C, and it is inferred that the fluids might be in equilibrium with ilmenite series granitic rocks. Oxygen isotope ratios (δ18O) of the Takatori ore-forming fluid range from +10‰ to +8‰. The δ18O values of the fluid decreased with decreasing temperature probably because the fluid was mixed with surrounding pore water and meteoric water. The formation pressure for the Takatori deposit is calculated to be 160 MPa on the basis of the difference between the pressure-independent oxygen isotope equilibrium temperature and pressure-dependent homogenization fluid inclusions temperature. The ore-formation depth is calculated to be around 6 km. These lines of evidence suggest that a granitic magma beneath the deposit played a crucial role in the Takatori deposit formation.


1989 ◽  
Vol 26 (10) ◽  
pp. 2032-2043 ◽  
Author(s):  
Christian V. Pitre ◽  
Jean M. Richardson

The Duck Pond tin prospect is a vein- and strata-bound cassiterite prospect that is located 2 km west of the East Kemptville open-pit tin mine in southwestern Nova Scotia. The host rocks of the Duck Pond prospect are interbedded metawacke and meta-argillite that belong to the transition unit of the Meguma Group. These rocks contain quartz, sericite, chlorite, hematite, rutile, manganese oxides, feldspar, and porphyroblastic garnet, but not detrital cassiterite. The prospect is structurally controlled and contains several cross-cutting vein sets that have alkalic, chloritic, or argillic alteration assemblages. Muscovite is the main indicator mineral for alkalic alteration and occurs in veins that contain anorthoclase or quartz. Cassiterite is associated with chloritic alteration and occurs as subhedral to euhedral grains, acicular needles, and colloform layers in veins in meta-argillite and as strata-bound disseminations in metawacke. Most cassiterite precipitated under externally buffered conditions with respect to oxygen. Fe, Cu, Zn, and As sulphide minerals and quartz were deposited during argillic alteration. Late-stage processes such as recrystallization, sulphidation, and oxidation also occurred. Chalcopyrite is replaced by bornite and covellite; pyrite is replaced by marcasite.Unlike the F-rich East Kemptville deposit, fluorine-rich and tin-sulphide minerals are not present in the Duck Pond prospect. Trace tourmaline, absent at East Kemptville, is found at Duck Pond. However, the source of tin-mineralizing fluids at Duck Pond and East Kemptville was likely the granitic magma of the Davis Lake complex, which also hosts the East Kemptville deposit. From the mineral assemblages and textural relationships, it appears that as the temperature dropped from 425–405 °C to less than 200 °C at Duck Pond, the pH dropped from 5.2 to no lower than 3. Log [Formula: see text] dropped from at least −19 to −43. Log [Formula: see text] rose from < −15 to > −10. Cassiterite precipitated at the higher ends of the temperature and pH ranges and the lower end of the log [Formula: see text] range.


2021 ◽  
Author(s):  
He-Dong Zhao ◽  
Kui-Dong Zhao ◽  
Martin R. Palmer ◽  
Shao-Yong Jiang ◽  
Wei Chen

Abstract Owing to the superimposition of water-rock interaction and external fluids, magmatic source signatures of ore-forming fluids for vein-type tin deposits are commonly overprinted. Hence, there is uncertainty regarding the involvement of magmatic fluids in mineralization processes within these deposits. Tourmaline is a common gangue mineral in Sn deposits and can crystallize from both the magmas and the hydrothermal fluids. We have therefore undertaken an in situ major, trace element, and B isotope study of tourmaline from the Yidong Sn deposit in South China to study the transition from late magmatic to hydrothermal mineralization. Six tourmaline types were identified: (1) early tourmaline (Tur-OE) and (2) late tourmaline (Tur-OL) in tourmaline-quartz orbicules from the Pingying granite, (3) early tourmaline (Tur-DE) and (4) late tourmaline (Tur-DL) in tourmaline-quartz dikelets in the granite, and (5 and 6) core (Tur-OC) and rim (Tur-OR), respectively of hydrothermal tourmaline from the Sn ores. Most of the tourmaline types belong to the alkali group and the schorl-dravite solid-solution series, but the different generations of magmatic and hydrothermal tourmaline are geochemically distinct. Key differences include the hundredfold enrichment of Sn in hydrothermal tourmaline compared to magmatic tourmaline, which indicates that hydrothermal fluids exsolving from the magma were highly enriched in Sn. Tourmaline from the Sn ores is enriched in Fe3+ compared to the hydrothermal tourmaline from the granite and displays trends of decreasing Al and increasing Fe content from core to rim, relating to the exchange vector Fe3+Al–1. This reflects oxidation of fluids during the interaction between hydrothermal fluids and the mafic-ultramafic wall rocks, which led to precipitation of cassiterite. The hydrothermal tourmaline has slightly higher δ11B values than the magmatic tourmaline (which reflects the metasedimentary source for the granite), but overall, the tourmaline from the ores has δ11B values similar to those from the granite, implying a magmatic origin for the ore-forming fluids. We identify five stages in the magmatic-hydrothermal evolution of the system that led to formation of the Sn ores in the Yidong deposit based on chemical and boron isotope changes of tourmaline: (1) emplacement of a B-rich, S-type granitic magma, (2) separation of an immiscible B-rich melt, (3) exsolution of an Sn-rich, reduced hydrothermal fluid, (4) migration of fluid into the country rocks, and (5) acid-consuming reactions with the surrounding mafic-ultramafic rocks and oxidation of the fluid, leading to cassiterite precipitation.


2018 ◽  
Vol 481 (1) ◽  
pp. 277-298 ◽  
Author(s):  
Masatsugu Ogasawara ◽  
Mayuko Fukuyama ◽  
Rehanul Haq Siddiqui ◽  
Ye Zhao

AbstractThe Mansehra granite in the NW Himalaya is a typical Lesser Himalayan granite. We present here new whole-rock geochemistry, Rb–Sr and Sm–Nd isotope data, together with zircon U–Pb ages and Hf isotope data, for the Mansehra granite. Geochemical data for the granite show typical S-type characteristics. Zircon U–Pb dating yields 206Pb/238U crystallization ages of 483–476 Ma. The zircon grains contain abundant inherited cores and some of these show a clear detrital origin. The 206Pb/238U ages of the inherited cores in the granite cluster in the ranges 889–664, 1862–1595 and 2029 Ma. An age of 664 Ma is considered to be the maximum age of the sedimentary protoliths. Thus the Late Neoproterozoic to Cambrian sedimentary rocks must be the protolith of the Mansehra granitic magma. The initial Sr isotope ratios are high, ranging from 0.7324 to 0.7444, whereas the εNd(t) values range from −9.2 to −8.6, which strongly suggests a large contribution of old crustal material to the protoliths. The two-stage Nd model ages and zircon Hf model ages are Paleoproterozoic, indicating that the protolith sediments were derived from Paleoproterozoic crustal components.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xinglin Chen ◽  
Yongjun Shao ◽  
Chunkit Lai ◽  
Cheng Wang

The Longmendian Ag–Pb–Zn deposit is located in the southern margin of the North China Craton, and the mineralization occurs mainly in quartz veins, altered gneissic wallrocks, and minor fault breccias in the Taihua Group. Based on vein crosscutting relations, mineral assemblages, and paragenesis, the mineralization can be divided into three stages: (1) quartz–pyrite, (2) quartz–polymetallic sulfides, and (3) quartz–carbonate–polymetallic sulfides. Wallrock alteration can be divided into three zones, i.e., chlorite–sericite, quartz–carbonate–sericite, and silicate. Fluid inclusions in all Stage 1 to 3 quartz are dominated by vapor-liquid two-phase aqueous type (W-type). Petrographic and microthermometric analyses of the fluid inclusions indicate that the homogenization temperatures of Stages 1, 2, and 3 are 198–332°C, 132–260°C, and 97–166°C, with salinities of 4.0–13.3, 1.1–13.1, and 1.9–7.6 wt% NaCleqv, respectively. The vapor comprises primarily H2O, with some CO2, H2, CO, N2, and CH4. The liquid phase contains Ca2+, Na+, K+, SO42−, Cl−, and F−. The sulfides have δ34S=–1.42 to +2.35‰ and 208Pb/204Pb=37.771 to 38.795, 207Pb/204Pb=15.388 to 15.686, and 206Pb/204Pb=17.660 to 18.101. The H–C–O–S–Pb isotope compositions indicate that the ore-forming materials may have been derived from the Taihua Group and the granitic magma. The fluid boiling and cooling and mixing with meteoric water may have been critical for the Ag–Pb–Zn ore precipitation. Geological and geochemical characteristics of the Longmendian deposit indicate that the deposit is best classified as medium- to low-temperature intermediate-sulfidation (LS/IS) epithermal-type, related to Cretaceous crustal-extension-related granitic magmatism.


2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 106
Author(s):  
Xing-Yuan Li ◽  
Jing-Ru Zhang ◽  
Chun-Kit Lai

Jiangxi Province (South China) is one of the world’s top tungsten (W) mineral provinces. In this paper, we present a new LA-ICP-MS zircon U-Pb age and Hf isotope data on the W ore-related Xianglushan granite in northern Jiangxi Province. The magmatic zircon grains (with high Th/U values) yielded an early Cretaceous weighted mean U-Pb age of 125 ± 1 Ma (MSWD = 2.5, 2σ). Zircon εHf(t) values of the Xianglushan granite are higher (−6.9 to −4.1, avg. −5.4 ± 0.7) than those of the W ore-related Xihuanshan granite in southern Jiangxi Province (−14.9 to −11.2, avg. −12.5 ± 0.9), implying different sources between the W ore-forming magmas in the northern and southern Jiangxi Province. Compiling published zircon geochemical data, the oxygen fugacity (fO2) of the late Yanshanian granitic magmas in Jiangxi Province (the Xianglushan, Ehu, Dahutang, and Xihuashan plutons) were calculated by different interpolation methods. As opposed to the W ore-barren Ehu granitic magma, the low fO2 of the Xianglushan granitic magma may have caused W enrichment and mineralization, whilst high fO2 may have led to the coexistence of Cu and W mineralization in the Dahutang pluton. Additionally, our study suggests that the absence of late Mesozoic Cu-Mo mineralization in the Zhejiang, Jiangxi, and Anhui Provinces (Zhe-Gan-Wan region) was probably related to low fO2 magmatism in the Cretaceous.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Thair Al-Ani

AbstractThe studied rock samples belong to the classic 1615–1645 Ma Wiborg Rapakivi granite terrane of southeastern Finland. Geochemical studies show that the rapakivi granites and associated rocks form metaluminous to peraluminous A-type granites and plot in the "within plate granites (WPG)" field on the tectonic discriminate diagrams from the Onkamaa, Suomenniemi and Luumäki. The rapakivi granite displays enrichment of light over heavy REE (LREE/HREE = 2-34) and usually negative Eu anomalies (Eu/Eu* = 0.01 - 1.4). Enrichment in REE in some studied samples is confined to highly fractionated portions of the Rapakivi granite. Fractional crystallization of the evolving fluorite-rich peraluminous granitic magma was accompanied, particularly at later stages by fluid fractionation, which plays an important role in the genesis of the REE-mineralization. The studied rapakivi granites host REE-minerals including monazite-(Ce), allanite (Ce), bastnäsite (Ce), xenotime, thorite and REE-bearing mineral apatite. Monazite and allanite are the most important REE carriers in the studied granites and these minerals are strongly enriched in the LREE.Monazites are hosted in apatite, quartz, plagioclase, K-feldspar, and biotite. Grain size of monazite is variable ranging from 50 to >100 μm.Monazite contains 48-68 wt% REE2O3, 24.3-29.3 wt% P2O5 and low Th<1.5 wt%ThO2. The Y, REE, U, Th-bearing minerals are not commonly associated with the primary minerals except for Th-bearing minerals, which occur as silicates (e.g. thorite, ThSiO4); and/or replace other elements in the structure of some accessory mineral, especially xenotime, brabantite, zircon, and apatite. Electron probe microanalysis (EPMA) provides an indication of solid solution series between thorite-xenotimezircon, which are related to hydrothermal solutions enriched in REE, Y, P, U, F, and Zr.


Sign in / Sign up

Export Citation Format

Share Document