scholarly journals The impact of employing insulation with variant thermal conductivity on the thermal performance of buildings in the extremely hot climate

2019 ◽  
Vol 16 ◽  
pp. 100562 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi
2019 ◽  
Vol 103 ◽  
pp. 02001 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi

This paper illustrates the impact of embedding an insulation layer of variable thermal conductivity in a typical building wall on the cooling effect and energy performance. The evaluation was performed by applying a conjugate heat transfer model, which was tested in extremely hot conditions of Al Ain (UAE). The thermal performance of a building incorporating insulation layers of variable thermal conductivity (k-value) was compared to a non-variable thermal conductivity system by quantifying the additional heat transferred due to the k-relationship with time. The results show that, when the k-value is a function of operating temperature, its effects on the temperature profile through the wall assembly during daytime is significant compared with that obtained when a constant k-value for the polystyrene (EPS) insulation is adopted. A similar trend in the evolution of temperatures during the day and across the wall section was observed when EPS material with different moisture content was evaluated. For the polyurethane insulation, the inner surface temperature reached 44 °C when constant k-value was adopted, increasing to 48.5 °C when the k-value was allowed to vary under the same ambient conditions.


Author(s):  
Shenghui Lei ◽  
Alexandre Shen ◽  
Ryan Enright

Silicon photonics has emerged as a scalable technology platform for future optotelectronic communication systems. However, the current use of SiO2-based silicon-on-insulator (SOI) substrates presents a thermal challenge to integrated active photonic components such as lasers and semiconductor optical amplifiers due to the poor thermal properties of the buried SiO2 optical cladding layer beneath these devices. To improve the thermal performance of these devices, it has been suggested that SiO2 be replaced with aluminum nitride (AlN); a dielectric with suitable optical properties to function as an effective optical cladding that, in its crystalline state, demonstrates a high thermal conductivity (∼100× larger than SiO2 in current SOI substrates). On the other hand, the tuning efficiencies of thermally-controlled optical resonators and phase adjusters, crucial components for widely tunable lasers and modulators, are directly proportional to the thermal resistance of these devices. Therefore, the low thermal conductivity buried SiO2 layer in the SOI substrate is beneficial. Moreover, to further improve the thermal performance of these devices air trenches have been used to further thermally isolate these devices, resulting in up to ∼10× increase in tuning efficiency. Here, we model the impact of changing the buried insulator on a SOI substrate from SiO2 to high quality AlN on the thermal performance of a MRR. We map out the thermal performance of the MRR over a wide range of under-etch levels using a thermo-electrical model that incorporates a pseudo-etching approach. The pseudo-etching model is based on the diffusion equation and distinguishes the regions where substrate material is removed during device fabrication. The simulations reveal the extent to which air trenches defined by a simple etch pattern around the MRR device can increase the thermal resistance of the device. We find a critical under-etch below which no benefit is found in terms of the MRR tuning efficiency. Above this critical under-etch, the tuning efficiency increases exponentially. For the SiO2-based MRR, the thermal resistance increases by ∼7.7× between the un-etched state up to the most extreme etch state. In the unetched state, the thermal resistance of the AlN-based MRR is only ∼4% of the SiO2-based MRR. At the extreme level of under-etch, the thermal resistance of the AlN-based MRR is still only ∼60% of the un-etched SiO2-based MRR. Our results suggest the need for a more complex MRR thermal isolation strategy to significantly improve tuning efficiencies if an AlN-based SOI substrate is used.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1348-1351
Author(s):  
Sha Sha Dong ◽  
Xiao Ping Feng

The thermal performance of perforated brick is affected by various factors, thermal conductivity, the holes rates, the pass design and etc. included. In order to analyze the impact of the pass design on the thermal performance of bidirectional thermal insulation bricks, the two-dimensional finite element model was developed using ANSYS. The simulated result shows that existence of vertical holes can enhance the thermal resistance in the longer dimension of the perforated brick. Under the condition of the same holes rates, narrowing the width of the vertical holes helps to improve the thermal resistance in the shorter dimension of the perforated brick. The function of these blocks are extremely influenced by the distribution of the vertical holes, the concentrated better than the both-sided when it comes to advancing the whole function.


2001 ◽  
Author(s):  
Victor Adrian Chiriac ◽  
Tien -Yu Tom Lee

Abstract The latest commercial applications for microelectronics use GaAs material for RF Power Amplifier devices. This leads to the necessity of identifying low cost packaging solutions with high standards for reliability, electrical and thermal performance. A detailed thermal analysis for the wirebonded GaAs devices is performed using numerical simulations. The main interest of the study focuses on the impact of die attach thermal conductivity (1.0 to 7.0 W/mK), substrate’s top metal layer thickness (25 to 50 μm), and via wall thickness (25 to 50 μm) on GaAs IC device overall thermal performance. The study uses a 2-layer organic substrate; the die attach thickness is 15μm. The peak temperatures reached by PA stages range from 102.7°C to 113.5°C, below the prohibitive/critical value of 150°C (based on 85°C ambient temperature). The increase of die attach thermal conductivity (3 times) led to a slight decrease in peak temperatures (up to 5°C) and the decay is much larger between the cases with 1 and 2.4 W/mK. The largest temperature differences were obtained by varying the thermal via thickness, as opposed to only increasing the top metal layer thickness. The peak temperatures and corresponding junction to ambient thermal resistances are documented. It is determined that for the same die attach thickness, for a thermal conductivity larger than 7 W/mK, the impact on the PA’s peak temperature is insignificant.


2003 ◽  
Vol 125 (4) ◽  
pp. 589-596 ◽  
Author(s):  
Victor Adrian Chiriac ◽  
Tien-Yu Tom Lee

The latest commercial applications for microelectronics use GaAs material for RF power amplifier (PA) devices. This leads to the necessity of identifying low cost packaging solutions with high standards for reliability, electrical, and thermal performance. A detailed thermal analysis for the wirebonded GaAs devices is performed using numerical simulations. The main interest of the study focuses on the impact of die attach thermal conductivity (1.0–50.0 W/mK), substrate’s top metal layer thickness (25–50 μm), and via wall thickness (25–50 μm) on GaAs IC device overall thermal performance. The study uses a two-layer organic substrate. The peak temperatures reached by the PA stages range from 99.6°C to 120.3°C, below the prohibitive/critical value of 150°C (based on 85°C ambient temperature). The increase of die attach thermal conductivity from 1.0 to 7.0 W/mK led to a decrease in peak temperatures of up to 18°C, with larger decay between 1 and 2.4 W/mK. The largest temperature differences were obtained by varying the thermal via thickness, as opposed to only increasing the top metal layer thickness. The peak temperatures and corresponding junction-to-ambient thermal resistances are thoroughly documented. With the same die attach thickness, for a thermal conductivity much larger than 7 W/mK, the impact on the PA’s peak temperature is insignificant. The die attach solder material (with a large thermal conductivity) leads to only a small (2.5°C) decrease in the PA junction temperature.


2022 ◽  
Vol 7 ◽  
pp. 2
Author(s):  
Ghanim Kadhem Abdulsada ◽  
Tawfeeq Wasmi Mohammed Salih

The application of thermal insulation technique for buildings in hot arid region still under development and requires investigation for many aspects, especially those related to the individual elements of the construction. The present study investigates the impact of efficient insulation on the thermal performance of the following construction elements: wall, roof and foundation. The techniques used for the insulation have followed the Passive House criteria. The study introduces many benefits for passive design of the building in extreme hot climate. The work has done experimentally in Kirkuk, Iraq for two building models; one is efficiently insulated and the other is traditional. The data, which are collected in summer time, show reduction in indoor temperature of the efficient model by 8 °C in average comparing to that of traditional one. Measurements show stability in the internal wall temperatures for efficient model with an average temperature of 33 °C comparing to 42 °C for traditional one. Similarly, the insulated roof radiates less heat into the indoor than that of traditional model. Furthermore, the effect of both efficient insulated roof and canopy shading reduces the temperature of internal surface temperature of the roof by 12 °C comparing to the traditional model. A local simulation program based on ASHRAE relations has shown an energy saving in the cooling load up to 70%.


Author(s):  
Vadim Gektin

The paper parametrically assesses the impact of the voids/delamination on the system thermal performance. Analysis are carried out numerically and validated against experimental data (thermal measurements and C-SAM images). Topics covered include the relationship between voids/delamination and TIMs’ and heat spreader’s effective thermal conductivity; sensitivity of the system thermal performance to void/delamination size and location; voids/delamination impact vs. on the chip power dissipation (uniform vs. non-uniform); comparison of TIM1 vs. TIM2 voids impact; and, finally, comparison of voids vs. delamination.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2005 ◽  
Vol 128 (2) ◽  
pp. 203-206 ◽  
Author(s):  
A.-R. A. Khaled

Heat transfer through joint fins is modeled and analyzed analytically in this work. The terminology “joint fin systems” is used to refer to extending surfaces that are exposed to two different convective media from its both ends. It is found that heat transfer through joint fins is maximized at certain critical lengths of each portion (the receiver fin portion which faces the hot side and the sender fin portion that faces the cold side of the convective media). The critical length of each portion of joint fins is increased as the convection coefficient of the other fin portion increases. At a certain value of the thermal conductivity of the sender fin portion, the critical length for the receiver fin portion may be reduced while heat transfer is maximized. This value depends on the convection coefficient for both fin portions. Thermal performance of joint fins is increased as both thermal conductivity of the sender fin portion or its convection coefficient increases. This work shows that the design of machine components such as bolts, screws, and others can be improved to achieve favorable heat transfer characteristics in addition to its main functions such as rigid fixation properties.


Sign in / Sign up

Export Citation Format

Share Document