Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi

2019 ◽  
Vol 97 ◽  
pp. 98-112 ◽  
Author(s):  
Li Li ◽  
Shan Nan Chen ◽  
Zubair Ahmed Laghari ◽  
Bei Huang ◽  
Hui Jun Huo ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1003
Author(s):  
Xia Luo ◽  
Yinjie Niu ◽  
Xiaozhe Fu ◽  
Qiang Lin ◽  
Hongru Liang ◽  
...  

Mandarin fish (Siniperca chuatsi) is one of the important cultured fish species in China. Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca Chuatsi rhabdovirus (SCRV) have hindered the development of mandarin fish farming industry. Vaccination is the most effective method for control of viral diseases, however viral vaccine production requires the large-scale culture of cells. Herein, a suspension culture system of Chinese perch brain cell (CPB) was developed on Cytodex 1 microcarrier in a stirred bioreactor. Firstly, CPB cells were cultured using Cytodex 1 microcarrier in 125 mL stirring flasks. With the optimum operational parameters, CPB cells grew well, distributed uniformly, and could fully cover the microcarriers. Then, CPB cells were digested with trypsin and expanded step-by-step with different expansion ratios from the 125 mL stirring bottle to a 500 mL stirring bottle, and finally to a 3-L bioreactor. Results showed that with an expansion ratio of 1:3, we achieved a high cell density level (2.25 × 106 cells/mL) with an efficient use of the microcarriers, which also confirmed the data obtained from the 125 mL stirring flask. Moreover, obvious cytopathic effects (CPE) were observed in the suspended CPB cells post-infection with ISKNV and SCRV. This study provided a large-scale culture system of CPB cells for virus vaccine production.


2001 ◽  
Vol 12 (3) ◽  
pp. 675-684 ◽  
Author(s):  
Jules J.E. Doré ◽  
Diying Yao ◽  
Maryanne Edens ◽  
Nandor Garamszegi ◽  
Elizabeth L. Sholl ◽  
...  

Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.


2010 ◽  
Vol 13 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Guoqiang Zhang ◽  
Wuying Chu ◽  
Songnian Hu ◽  
Tao Meng ◽  
Linlin Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document