Tree-ring reconstruction of groundwater levels in Alberta, Canada: Long term hydroclimatic variability

2011 ◽  
Vol 29 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Cesar Perez-Valdivia ◽  
David Sauchyn
2021 ◽  
Author(s):  
Zeynab Foroozan ◽  
Jussi Grießinger ◽  
Kambiz Pourtahmasi ◽  
Achim Bräuning

<p>Knowledge about the long-term hydroclimatic variability is essential to analyze the historic course and recent impact of climate change, especially in semi-arid and arid regions of the world. In this study, we present the first tree-ring δ<sup>18</sup>O chronology for the semi-arid parts of northern Iran based on juniper trees. We were able to reconstruct past hydroclimatic variability for the past 500 years. The highly significant correlation between tree-ring δ<sup>18</sup>O and spring precipitation indicates the primary influence of spring moisture availability on δ<sup>18</sup>O variations. The thereof derived precipitation reconstruction reveals short and long-term variability of precipitation intensity, duration, and frequency of dry/wet events. During the past 500 years, the driest period occurred in the 16<sup>th</sup> century, whereas the 18th century was comparably wet. A gradual decline in the reconstructed spring precipitation is evident since the beginning of the 19th century, culminating in the continuing drought of the 20<sup>th</sup> century. An analysis of dry/wet years indicated that over the last three centuries, the occurrence of years with a relatively dry spring is increasing. In contrast, more humid spring conditions are decreasing. However, the overall frequency of the occurrence of extreme events increased over the past five centuries. In addition, past hydrological disasters recorded in Persian history were well represented in our reconstruction. Correlations between our reconstructed precipitation record and large-scale circulation systems revealed no significant influence of large-scale climatic drivers on spring precipitation variations in north Iran, which therefore seem to be mostly controlled by a regional climate forcing.</p>


2021 ◽  
Author(s):  
Alison J. O’Donnell ◽  
W. Lachlan McCaw ◽  
Edward R. Cook ◽  
Pauline F. Grierson

AbstractDeclining winter rainfall coupled with recent prolonged drought poses significant risks to water resources and agriculture across southern Australia. While rainfall declines over recent decades are largely consistent with modelled climate change scenarios, particularly for southwest Australia, the significance of these declines is yet to be assessed within the context of long-term hydroclimatic variability. Here, we present a new 668-year (1350–2017 CE) tree-ring reconstruction of autumn–winter rainfall over inland southwest Australia. This record reveals that a recent decline in rainfall over inland southwest Australia (since 2000 CE) is not unusual in terms of either magnitude or duration relative to rainfall variability over the last seven centuries. Drought periods of greater magnitude and duration than those in the instrumental record occurred prior to 1900 CE, including two ‘megadroughts’ of > 30 years duration in the eighteenth and nineteenth centuries. By contrast, the wettest > decadal periods of the last seven centuries occurred after 1900 CE, making the twentieth century the wettest of the last seven centuries. We conclude that the instrumental rainfall record (since ~ 1900 CE) does not capture the full scale of natural hydroclimatic variability for inland southwest Australia and that the risk of prolonged droughts in the region is likely much higher than currently estimated.


Author(s):  
Paolo Cherubini ◽  
Giovanna Battipaglia ◽  
John L. Innes

Abstract Purpose of Review Society is concerned about the long-term condition of the forests. Although a clear definition of forest health is still missing, to evaluate forest health, monitoring efforts in the past 40 years have concentrated on the assessment of tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree growth trends are difficult to interpret because of sampling bias, and ring width patterns do not provide any information about tree physiological processes. Recent Findings In the past two decades, tree-ring stable isotopes have been used not only to reconstruct the impact of past climatic events, such as drought, but also in the study of forest decline induced by air pollution episodes, and other natural disturbances and environmental stress, such as pest outbreaks and wildfires. They have proven to be useful tools for understanding physiological processes and tree response to such stress factors. Summary Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.


Author(s):  
K. Furuno ◽  
A. Kagawa ◽  
O. Kazaoka ◽  
T. Kusuda ◽  
H. Nirei

Abstract. Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.


Author(s):  
René Garreaud ◽  
Camila Alvarez-Garreton ◽  
Jonathan Barichivich ◽  
Juan Pablo Boisier ◽  
Duncan Christie ◽  
...  

Abstract. Since 2010 an uninterrupted sequence of dry years, with annual rainfall deficits ranging from 25 to 45 %, has prevailed in Central Chile (western South America, 30–38° S). Although intense 1- or 2-year droughts are recurrent in this Mediterranean-like region, the ongoing event stands out because of its longevity and large spatial extent. The extraordinary character of the so-called Central Chile Mega Drought (MD) was established against century long historical records and a millennial tree-ring reconstruction of regional precipitation. The largest MD-averaged rainfall relative anomalies occurred in the northern, semi-arid sector of central Chile but the event was unprecedented to the south of 35° S. ENSO neutral conditions have prevailed since 2011 (but for the strong El Niño 2015) contrasting with La Niña conditions that often accompanied past droughts. The precipitation deficit diminished the Andean snowpack and resulted in amplified declines (up to 90 %) of river flow, reservoir volumes and groundwater levels along central Chile and westernmost Argentina. In some semiarid basins we also found a conspicuous decrease in the runoff-to-rainfall coefficient. A substantial decrease in vegetation productivity occurred in the shrubland-dominated, northern sector, but a mix of greening and browning patches occurred farther south where irrigated croplands and exotic forest plantations dominate. The ongoing warming in central Chile, making the MD one of the warmest 6-year period on record, may have also contributed to such complex vegetation changes by increasing potential evapotranspiration. The understanding of the nature and biophysical impacts of the MD contributes to preparedness efforts to face a dry, warm future regional climate scenario.


1998 ◽  
Vol 14 (3) ◽  
pp. 191-199 ◽  
Author(s):  
R. D. D'Arrigo ◽  
E. R. Cook ◽  
M. J. Salinger ◽  
J. Palmer ◽  
P. J. Krusic ◽  
...  

1985 ◽  
Vol 22 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Christian Bégin ◽  
Louise Filion

A landslide in Clearwater Lake has been dated to spring of 1933 from tree-ring analysis (reaction wood, growth suppression, and corrosion scars). From the 52 sampled trees, seven peak periods of movement were registered within the site before landslide occurrence: 1785, 1815, 1827, 1829, 1852–1853, 1871–1872, 1897, and 1926. After a slow progression lasting 200 years, the slope movements accelerated in 1926, as indicated by suppressed growth rings. It is proposed here that the landslide was the outcome of a long-term slope development partly controlled by climate (precipitation). Postdisturbance forest regeneration (between 1950 and 1976) on the newly exposed substrate is also related to climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document