Membrane bioreactor for water reuse

Desalination ◽  
2007 ◽  
Vol 203 (1-3) ◽  
pp. 15-19 ◽  
Author(s):  
Christelle Wisniewski
2006 ◽  
Vol 54 (11-12) ◽  
pp. 207-214 ◽  
Author(s):  
B. Rezania ◽  
J.A. Oleszkiewicz ◽  
N. Cicek

An anaerobic submerged membrane bioreactor was coupled with a novel hydrogen delivery system for hydrogenotrophic denitrification of municipal final effluent containing nitrate. The biological treatment unit and hydrogen delivery unit were proven successful in removing nitrate and delivering hydrogen, respectively. Complete hydrogen transfer resulted in reducing nitrate below detectable levels at a loading of 0.14 kg N m−3 d−1. The produced water met all drinking water guidelines except for color and organic carbon. However, the organic carbon was removed by 72% mostly by membrane rejection. To reduce the organic carbon and color of the effluent, post treatment of the produced water is required.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Gaetan Blandin ◽  
Pierre Le-Clech ◽  
Emile Cornelissen ◽  
Arne R. D. Verliefde ◽  
Joaquim Comas ◽  
...  

2017 ◽  
Vol 30 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Thi Thu Nga Vu ◽  
Manon Montaner ◽  
Christelle Guigui

Wastewater effluents can be treated by an integrated membrane system combining membrane bioreactor (MBR) and reverse osmosis (RO) for effective removal of micropollutants in the field of high-quality water reuse. However, discharging the RO concentrate waste stream directly into the natural environment could lead to serious problems due to the toxic components contained in the concentrates (micropollutants, salts, organic matter). A possible solution could be the recirculation of RO concentrate waste to the MBR. However, such an operation should be studied in detail since the recirculation of non-biodegradable organic matter or high concentrations of salts and micropollutants could directly or indirectly contribute to MBR membrane fouling and modification of the biodegradation activity. In this context, the work reported here focused on the recirculation of such concentrates in an MBR, paying specific attention to MBR membrane fouling. Lab-scale experiments were performed on a continuous MBR-RO treatment line with RO concentrate recirculation. The main goal was to determine the recovery of the RO unit and of the global process that maintained good process performance in terms of biodegradation and MBR fouling. The results demonstrate that the impact of the toxic flow on activated sludge depends on the recovery of the RO step but the same trends were observed regardless of the organic matter and salt contents of the concentrates: the concentration of proteins increased slightly. Size-exclusion high performance liquid chromatography (HPLC-SEC) was employed to study the effects of RO concentrate on the production of protein-like soluble microbial products (SMPs) and demonstrated a significant peak of protein-like substances corresponding to 10-100 kDa and 100-1 000 kDa molecules in the supernatant. Thus a significant increase in the propensity for sludge fouling was observed, which could be attributed to the increased quantity of protein-like substances. Finally, the effect of the concentrate on sludge activity was studied and no significant effect was observed on biodegradation, indicating that the return of the concentrate to the MBR could be a good alternative.


2012 ◽  
Vol 2 (2) ◽  
pp. 67-73 ◽  
Author(s):  
T. Trinh ◽  
B. van den Akker ◽  
H. M. Coleman ◽  
R. M. Stuetz ◽  
P. Le-Clech ◽  
...  

Submerged membrane bioreactors (MBRs) have attracted a significant amount of interest for decentralised treatment systems due to their small footprint and ability to produce high quality effluent, which is favourable for water reuse applications. This study provides a comprehensive overview of the capacity of a full-scale decentralised MBR to eliminate 17 endocrine disrupting chemicals (EDCs) and five indigenous microbial indicators. The results show that the MBR consistently achieved high removal of EDCs (>86.5%). Only 2 of the 17 EDCs were detected in the MBR permeate, namely two-phenylphenol and 4-tert-octylphenol. Measured log10 reduction values of vegetative bacterial indicators were in the range of 5–5.3 log10 units, and for clostridia, they were marginally lower at 4.6 log10 units. Removal of bacteriophage was in excess of 4.9 log10 units. This research shows that MBRs are a promising technology for decentralised water reuse applications.


2006 ◽  
Vol 54 (10) ◽  
pp. 9-15
Author(s):  
H. De Wever ◽  
W. Boënne ◽  
M. Danau ◽  
N. Vanderspiegel ◽  
K. Hardy ◽  
...  

This paper reports on the potential for water reuse in the malting sector. Core unit of a treatment train to close the water loop was a membrane bioreactor (MBR). We compared three different commercial submerged membranes for their fouling potential in this application and related this to the presence of extracellular polymeric substances (EPS). In a second step, we subjected MBR permeate to reverse osmosis and several (advanced) oxidation processes to evaluate the water quality achieved. Finally we performed a set of water reuse tests with waters obtained through different scenarios. The optimal scenario was then tested in a closed water loop over several malting cycles at pilot scale and the effect on water and malt quality was investigated.


2012 ◽  
Vol 33 ◽  
pp. 234-241 ◽  
Author(s):  
Jan Hoinkis ◽  
Shamim A. Deowan ◽  
Volker Panten ◽  
Alberto Figoli ◽  
Rong Rong Huang ◽  
...  

2017 ◽  
Vol 95 ◽  
pp. 18-33 ◽  
Author(s):  
Mathias Monnot ◽  
Bénédicte Nguyen ◽  
François Zaviska ◽  
Geoffroy Lesage ◽  
Marc Héran

2011 ◽  
Vol 63 (1) ◽  
pp. 66-71 ◽  
Author(s):  
S. Beier ◽  
C. Cramer ◽  
S. Köster ◽  
C. Mauer ◽  
L. Palmowski ◽  
...  

Membrane Bioreactors (MBR) are a very attractive option for the treatment of hospital wastewater and elimination of pharmaceuticals in high density urban areas. The present investigation showed that, depending on the substance, between 19% and 94% of the level of antibiotics found in the environment originate from hospitals. Because of their ecotoxic potential, hospital wastewaters can have a significant impact on the environment. The segregation of these wastewaters and their separate treatment at the source can reduce the entry of drugs in waterways and enable water reuse after adequate polishing treatment processes.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 383-391 ◽  
Author(s):  
Y. Liu ◽  
L. Wang ◽  
B. Wang ◽  
H. Cui ◽  
J. Zhang

A study was carried out on a hybrid (AS-SBF) membrane bioreactor (HMBR) for the municipal wastewater reclamation and reuse at Chengfengzhuang WWTP in Daqing City, Heilongjiang Province. It was found that the effects of DO and water temperature on performance of the HMBR was significant. Under the conditions of water temperature in range of 10–14°C, pH of 6.6–7.0, DO of 4–6mg/l and HRT of 7h, the HMBR exhibited removal efficiencies for CODcr, BOD5, NH3-N and TN of 96.7%, 98.9%, 93.7% and 60.5% respectively. The turbidity of effluent from HMBR was below 1NTU. The effluent of HMBR meets the standard of wastewater reclamation for oil exploitation. PAC was added into the bioreactor at the second operating stage, in order to further research parameters variation. The flux was improved by 53.2%, compared to the membrane without PAC-addition, due to formation of a PAC pre-coat layer on the membrane surface, with lots of advantages such as larger granules, higher porosity, non-compressibility, higher filterability and easy removal, compared with pure biomass layer. In addition, the performance of HMBR was further improved, due to adsorption and degradation of SMPs, the average removal of CODcr and TN was further improved by 5.1% and 13.5% respectively. Biomass in the HMBR was quantitatively measured, of which the biofilm played a major role in pollutants removal.


Membranes ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 37 ◽  
Author(s):  
Mujahid Aziz ◽  
Tunde Ojumu

In the context of water scarcity, domestic secondary effluent reuse may be an option as a reliable source for alleviating acute water shortage. The increasing risks linked with the presence of natural steroid hormones and many emerging anthropogenic micropollutants (MPs) passing through municipal wastewater treatment works (MWWTWs) are of concern for their endocrine-disrupting activities. In this study, domestic wastewater treated by a full-scale membrane bioreactor (MBR) at an MWWTW in the Western Cape Province, South Africa, was used directly as the influent to a reverse osmosis (RO) pilot plant for the removal of selected natural steroid hormones 17β-estradiol (E2) and testosterone (T) as a potential indirect water recycling application. Estrogenicity and androgenicity were assessed using the enzyme-linked immunosorbent assays (ELISA) and the recombinant yeast estrogen receptor binding assays (YES). The influent pH and flux did not influence the rejection of E2 and T, which was most likely due to adsorption, size exclusion, and diffusion simultaneously. RO and nanofiltration (NF) exhibited excellent removal rates (>95%) for E2 and T. All the E2 effluent samples with MBR/ultrafiltration (UF), MBR/NF, and MBR/RO were lower than the US EPA and WHO trigger value of 0.7 ng/L, as well as the predicted no-effect concentration (PNEC) values for fish (1 ng E2/L).


Sign in / Sign up

Export Citation Format

Share Document