Feasibility study of high performance field emitter pattern with the horizontally oriented carbon nanotubes by electrophoresis

2009 ◽  
Vol 18 (2-3) ◽  
pp. 520-523 ◽  
Author(s):  
Chen-Chun Lin ◽  
Ying-Chun Chen ◽  
Terry Wang ◽  
Cheng-Tzu Kuo
Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3244
Author(s):  
Jiuzhou Zhao ◽  
Zhenjun Li ◽  
Matthew Thomas Cole ◽  
Aiwei Wang ◽  
Xiangdong Guo ◽  
...  

The nanocone-shaped carbon nanotubes field-emitter array (NCNA) is a near-ideal field-emitter array that combines the advantages of geometry and material. In contrast to previous methods of field-emitter array, laser ablation is a low-cost and clean method that does not require any photolithography or wet chemistry. However, nanocone shapes are hard to achieve through laser ablation due to the micrometer-scale focusing spot. Here, we develop an ultraviolet (UV) laser beam patterning technique that is capable of reliably realizing NCNA with a cone-tip radius of ≈300 nm, utilizing optimized beam focusing and unique carbon nanotube–light interaction properties. The patterned array provided smaller turn-on fields (reduced from 2.6 to 1.6 V/μm) in emitters and supported a higher (increased from 10 to 140 mA/cm2) and more stable emission than their unpatterned counterparts. The present technique may be widely applied in the fabrication of high-performance CNTs field-emitter arrays.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Won Lee ◽  
Joon Young Cho ◽  
Mi Jeong Kim ◽  
Jung Hoon Kim ◽  
Jong Hwan Park ◽  
...  

AbstractSoft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm−1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.


2021 ◽  
Author(s):  
Mingjie Li ◽  
Xuan Zheng ◽  
Xiang Li ◽  
Youjun Yu ◽  
Jinlong Jiang

Recently, transition metal selenides have been investigated extensively as promising electrode materials for high-performance supercapacitors. Herein, the multi-component CoSe2/CNTs@g-C3N4 composites are prepared using a two-step hydrothermal method by incorporating one-dimensional...


Sign in / Sign up

Export Citation Format

Share Document