Use of mRNA suppression to estimate CYP3A4 protein degradation rate constant in primary human hepatocytes

2017 ◽  
Vol 32 (1) ◽  
pp. S109 ◽  
Author(s):  
Christina Y. Chan ◽  
Owain Roberts ◽  
Nadeem Hassan ◽  
Neill Liptrott ◽  
Marco Siccardi ◽  
...  
1983 ◽  
Vol 57 (5) ◽  
pp. 1276-1285 ◽  
Author(s):  
Rick Stock ◽  
Terry Klopfenstein ◽  
Dennis Brink ◽  
Steve Lowry ◽  
Dave Rock ◽  
...  

2010 ◽  
Vol 62 (11) ◽  
pp. 2579-2589 ◽  
Author(s):  
Koji Tani ◽  
Yoshihiko Matsui ◽  
Kentaro Narita ◽  
Koichi Ohno ◽  
Taku Matsushita

We quantitatively evaluated the factors that affect the concentrations of rice-farming pesticides (an herbicide and a fungicide) in river water by a sensitivity analysis using a diffuse pollution hydrologic model. Pesticide degradation and adsorption in paddy soil affected concentrations of the herbicide pretilachlor but did not affect concentrations of the fungicide isoprothiolane. We attributed this difference to the timing of pesticide application in relation to irrigation and drainage of the rice paddy fields. The herbicide was applied more than a month before water drainage of the fields and runoff was gradual over a long period of time, whereas the fungicide was applied shortly before drainage and runoff was rapid. However, the effects of degradability-in-water on the herbicide and fungicide concentrations were similar, with concentrations decreasing only when the rate constant of degradation in water was large. We also evaluated the effects of intermittent irrigation methods (irrigation/artificial drainage or irrigation/percolation) on pesticide concentrations in river water. The runoff of the fungicide, which is applied near or in the period of intermittent irrigation, notably decreased when the method of irrigation/artificial drainage was changed to irrigation/percolation. In a sensitivity analysis evaluating the synergy effect of degradation and adsorbability in soil, the degradation rate constant in soil greatly affected pesticide concentration when the adsorption coefficient was small but did not affect pesticide concentration when the adsorption coefficient was large. The pesticide concentration in the river water substantially decreased when either or both the degradation rate constant in soil and adsorption coefficient was large.


Author(s):  
Anak Iamaroon ◽  
Supansa Pata ◽  
Prakasit Archewa ◽  
Chayarop Supanachart ◽  
Sutthichai Krisanaprakornkit

2000 ◽  
Vol 80 (2) ◽  
pp. 315-325 ◽  
Author(s):  
G. F. Tremblay ◽  
R. Michaud ◽  
G. Bélanger ◽  
K. B. McRae ◽  
H. V. Petit

The quality of alfalfa would be greatly improved by an increase in its ruminal undegradable protein (RUP) concentration. Protein degradation rate (PDR), in vitro dry matter digestibility (IVDMD), leaf weight ratio (LWR), dry matter yield (DMY), total nitrogen (TN), in vitro RUP (expressed on both TN, RUP-TN, and dry matter basis, RUP-DM), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were determined in 27 alfalfa cultivars. Cultivars were seeded in triplicate on 2 consecutive years and evaluated during the 2 subsequent production years with two harvests per year. Protein degradation rate and RUP-TN were determined using a ruminal inhibitor in vitro system. Data were averaged for spring growth, summer regrowth, and both harvests across 2 production years. Each of the three data sets was analyzed by ANOVA followed by a principal component analysis (PCA) on the ANOVA means. For the four-harvest data, cultivar differences were highly significant (P < 0.001) for all variates except for PDR (P = 0.07) and RUP-TN concentration (P = 0.10). The first PCA axis was largely defined positively by RUP-DM, IVDMD, TN, LWR, and RUP-TN, but negatively with ADF, NDF, PDR, and DMY. The second PCA axis defined a contrast between PDR versus RUP-TN, DMY, ADF, and NDF. Five cultivars were distinctive with high or low PCA scores in all three PCA. Rangelander and Heinrichs, along with Ultra, had low PDR; the first two cultivars had low DMY whereas Ultra was a medium-yielding cultivar. In contrast, Algonquin and Oneida VR had high PDR and medium DMY. While the first principal component (PC) indicated a general trend that low PDR and high RUP were associated with low-yielding cultivars, the second PC identified specific cultivars with both low PDR and high DMY. Therefore, selection for low PDR and high DMY is feasible. Key words: ruminal protein escape, dry matter digestibility, alfalfa


2020 ◽  
Vol 4 (1) ◽  
pp. 12-17
Author(s):  
Fábio Barbosa ◽  
Leonardo Pezzi ◽  
Julia Sorrentino ◽  
Martin Steppe ◽  
Nadia Volpato ◽  
...  

Stability studies correspond to a set of tests designed to assess changes in the quality of a given drug over time and under the influence of a number of factors. Among these factors, pH plays an important role, due to the catalytic effect that hydronium and hydroxide ions can play in several reactions. In the present study, the degradation kinetics of nitazoxanide was evaluated over a wide pH range, and the main degradation product generated was identified by LC-MS/MS. Nitazoxanide showed first-order degradation kinetics in the pH range of 0.01 to 10.0 showing greater stability between pH 1.0 and 4.0. The degradation rate constant calculated for these pH was 0.0885 x 10-2 min-1 and 0.0689 x 10-2 min-1, respectively. The highest degradation rate constant value was observed at pH 10.0 (0.7418 x 10-2 min-1) followed by pH 0.01 (0.5882 x 10-2 min-1). A major degradation product (DP-1) was observed in all conditions tested. Through LC-MS/MS analysis, DP-1 was identified as a product of nitazoxanide deacetylation. The effect of pH on the stability of nitazoxanide and the kinetic data obtained contribute to a better understanding of the intrinsic stability characteristics of nitazoxanide.


2019 ◽  
Vol 39 (3-4) ◽  
pp. 81-94 ◽  
Author(s):  
Suchada Phophayu ◽  
Pichitchai Pimpang ◽  
Sawitree Wongrerkdee ◽  
Supphadate Sujinnapram ◽  
Sutthipoj Wongrerkdee

The high crystallinity of graphene quantum dots-ZnO nanocomposites is considered to have a significant effect in improving the carrier lifetime for enhanced photocatalytic degradation. The graphene quantum dots-ZnO nanocomposites were synthesized by adding graphene quantum dots solution into starting precursors during the precipitation. Characterization was performed using various techniques. High crystallinity of graphene quantum dots-ZnO nanocomposites is obtained in terms of increased crystal size and decreased dislocation density. The improved crystallinity increases the carrier lifetime on the material surface for the functional improvement of photocatalytic material. Photocatalytic test of methylene blue and methyl orange was performed under UV irradiation. Degradation rate constant reaches the maximum value for both organic dyes for the appropriate preparing condition of graphene quantum dots-ZnO nanocomposites. The graphene quantum dots-ZnO nanocomposites were then applied to degrade commercial glyphosate herbicide contaminants for an agricultural wastewater treatment investigation. The investigation aims to demonstrate a facile useful way of herbicide contaminant reduction for the better health of farmers. The graphene quantum dots-ZnO nanocomposites show an enhancement of the photocatalytic process with improved degradation rate constant (23% increased) in comparison to pure ZnO. Therefore, this work demonstrates that graphene quantum dots-ZnO nanocomposites can be used as a photocatalytic material for degrading organic dyes and commercial herbicide contaminants owing to its low-cost and environmental-friendly properties.


1993 ◽  
Vol 28 (7) ◽  
pp. 117-123 ◽  
Author(s):  
Qi Peishi ◽  
Wang Boazhen ◽  
Ma Fang ◽  
Zhang Jinsong ◽  
Li Tingjun

A study was carried out on the intensification of a pond system, consisting of an anaerobic pond, a facultative pond and a polishing pond, in Anda City, Heilongjiang Province, by fibrous carriers packed in the anaerobic pond, by means of which the performance of the pond system was remarkably improved with higher removal capacities and efficiencies for SS, BOD5, COD, TN, TP and bacteria, compared with the conventional system. The mechanism for the intensified effect was found to be ascribed to the increase of biomass in the form of biofilm attached to the surface of the fibrous carriers and more even distribution of the biomass in the pond. A mathematical model based on the complete mixed flow pattern was developed both for the intensified and conventional anaerobic pond, and the organic degradation rate constant value K in the former was found to be much greater than that in the latter. The microbial communities in both the ponds were also observed.


2017 ◽  
Vol 29 (2) ◽  
pp. 207-228 ◽  
Author(s):  
Lei Li ◽  
Clark J. Nelson ◽  
Josua Trösch ◽  
Ian Castleden ◽  
Shaobai Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document