The role of transcription factor HNF1Α and long non-coding RNA HNF1Α-AS1 in the regulation of cytochrome P450s and nuclear receptors in liver cells

2018 ◽  
Vol 33 (1) ◽  
pp. S32 ◽  
Author(s):  
Liming Chen ◽  
Yifan Bao ◽  
Stephanie Piekos ◽  
Xiao-bo Zhong
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3586-3586
Author(s):  
Ada Congrains ◽  
João Agostinho Machado-Neto ◽  
Flávia Adolfo Corrocher ◽  
Renata Giardini Rosa ◽  
Fernanda Soares Niemann ◽  
...  

Abstract Aberrant regulation of the WNT signaling pathway is a signature in numerous human cancers. Lymphoid enhancer-binding factor-1 (LEF1) is an important transcription factor downstream of this pathway. LEF1 over-expression induces AML in mice and plays a critical role in hematopoietic cell differentiation (Petropoulos et al JME 2008). Reduction of LEF1 expression through the progression of myelodysplastic syndrome has been reported and further supports the relevance of this gene in the disease pathogenesis (Pellagatti et al Br J Haematol. 2009). Our previous work using microarray technology revealed a decreased expression of a long non-coding RNA antisense to LEF1 (LEF1-AS) in MDS patients (Baratti et al BMC Medical Genomics 2010). Mounting evidence suggests that long non-coding transcripts play important roles in the epigenetic regulation of coding genes. In this context it is not surprising that long non-coding RNAs are emerging as key players in disease development and progression. Non-coding expression overlapping coding genes is very common and several examples of local regulation have been described in the literature. Here we investigate for the first time the role of LEF1 antisense long non-coding in hematopoiesis and demonstrated its contribution in the regulation of the LEF1 locus in a leukemic cell line. To explore a possible role of LEF1-AS in differentiation, we evaluated the expression pattern of LEF1-AS through erythroid cell differentiation using qRT-PCR. CD34+ HSC cells from 6 healthy donors were induced to differentiate into erythrocytes by addition of erythropoietin during 12 days. We observed that LEF1-AS is modulated during erythroid differentiation. It was significantly down-regulated during the first stages of differentiation from CD34+ HSC to erythroblast (from collection day 6 to day 8 after addition of erythropoietin, 78% mean reduction, P<0.0001) and it was up-regulated at the end-point of collection, day 12 (not significant). Lef1 coding gene displayed a similar expression pattern, consistent with previous reports of Lef1 expression during erythroid maturation (Edmaier et al Leukemia 2014). To explore a possible regulatory role of LEF1-AS, we cloned and over-expressed the transcript in KG1 CD34+ leukemia cell line. Transient over-expression of Lef1-AS led to a significant up-regulation of Lef1 gene (22% increase, P<0.05). We also observed an increase in cell viability (19% increase P<0.05), measured by MTT, which is consistent with the up-regulation of LEF1, a pro-proliferative and anti-apoptotic transcription factor. Our preliminary results from over-expressing LEF1-AS in CD34+ HSCs suggest a similar regulatory effect of LEF1-AS upon its coding counterpart, LEF1. Since aberrant expression of LEF1 is known to disrupt normal differentiation of CD34+ cells, LEF1-AS could potentially affect differentiation through the modulation of LEF1 coding gene. Our results reveal LEF1-AS transcript as a novel player in hematopoiesis and hematologic malignancy. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Lu ◽  
Xinglei Qin ◽  
Yajun Zhou ◽  
Gang Li ◽  
Zhaoyang Liu ◽  
...  

AbstractGemcitabine is the first-line chemotherapy drug for cholangiocarcinoma (CCA), but acquired resistance has been frequently observed in CCA patients. To search for potential long noncoding RNAs (lncRNAs) involved in gemcitabine resistance, two gemcitabine resistant CCA cell lines were established and dysregulated lncRNAs were identified by lncRNA microarray. Long intergenic non-protein coding RNA 665 (LINC00665) were found to rank the top 10 upregulated lncRNAs in our study, and high LINC00665 expression was closely associated with poor prognosis and chemoresistance of CCA patients. Silencing LINC00665 in gemcitabine resistant CCA cells impaired gemcitabine tolerance, while enforced LINC00665 expression increased gemcitabine resistance of sensitive CCA cells. The gemcitabine resistant CCA cells showed increased EMT and stemness properties, and silencing LINC00665 suppressed sphere formation, migration, invasion and expression of EMT and stemness markers. In addition, Wnt/β-Catenin signaling was activated in gemcitabine resistant CCA cells, but LINC00665 knockdown suppressed Wnt/β-Catenin activation. B-cell CLL/lymphoma 9-like (BCL9L), the nucleus transcriptional regulators of Wnt/β-Catenin signaling, plays a key role in the nucleus translocation of β-Catenin and promotes β-Catenin-dependent transcription. In our study, we found that LINC00665 regulated BCL9L expression by acting as a molecular sponge for miR-424-5p. Moreover, silencing BCL9L or miR-424-5p overexpression suppressed gemcitabine resistance, EMT, stemness and Wnt/β-Catenin activation in resistant CCA cells. In conclusion, our results disclosed the important role of LINC00665 in gemcitabine resistance of CCA cells, and provided a new biomarker or therapeutic target for CCA treament.


2016 ◽  
Vol 7 (6) ◽  
pp. e2248-e2248 ◽  
Author(s):  
K Shan ◽  
Q Jiang ◽  
X -Q Wang ◽  
Y -N -Z Wang ◽  
H Yang ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157924 ◽  
Author(s):  
Kirsten G. Coupland ◽  
Woojin S. Kim ◽  
Glenda M. Halliday ◽  
Marianne Hallupp ◽  
Carol Dobson-Stone ◽  
...  

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Baoyan Fan ◽  
Wanlong Pan ◽  
Xinli Wang ◽  
Michael Chopp ◽  
Zheng Gang Zhang ◽  
...  

Background and Purpose: Adult neurogenesis contributes to functional recovery after stroke. Long non-coding RNAs (lncRNAs) regulate stem cell self-renewal and differentiation. However, the role of lncRNAs in stroke-induced neurogenesis remains unknown. Methods and Results: Using lncRNA array and in situ hybridization, we analyzed lncRNA profiles of adult neural stem cells (NSCs) isolated from the subventricular zone neurogenic region in rats subjected to middle cerebral artery occlusion. We found that H19 was the most highly upregulated lncRNA (19 fold) in ischemic NSCs compared with non-ischemic NSCs. Reduction of endogenous H19 in NSCs by CRISPR-Cas9 genome editing significantly decreased the proliferation and increased the apoptosis of ischemic NSCs, as assayed by the number of BrdU + cells (56±5% vs 22±3%, p<0.01, n=3) and Caspase-3/7 activity compared to NSCs transfected with scrambled small guide RNA (sgRNA). Knockdown of H19 significantly decreased the number of Tuj1 + neuroblasts (8±2% vs 5±0.4%, p<0.01, n=3) and NG 2 + oliogodendrocyte progenitor cells (10±1% vs 5±0.3%, p<0.01, n=3), suggesting that deletion of H19 suppresses the proliferation and survival and blocks the differentiation of NSCs into neurons and oligodendrocytes. Additional RNA-sequencing and bioinformatics analyses revealed that genes deregulated by H19 knockdown were involved in transcription, apoptosis, proliferation, cell cycle and response to hypoxia. Western blot analysis validated that loss-of-function and gain-of-function of H19 significantly increased and reduced, respectively, the transcription of cell cycle-related genes including p27. Using ChIRP assay, we found that upregulated H19 in NSCs was physically associated with EZH2 which catalyzes the repressive H3K27me3 histone marker. Knockdown of H19 significantly reduced the enrichment of H3K27me3 at the promoter of p27, leading to the upregulation of p27 expression and consequently inhibition of NSC proliferation. Conclusions: H19 mediates stroke-induced neurogenesis by regulating genes involved in cell cycle and survival through the interaction with chromatin remodeling proteins. Our data provide novel insights into epigenetic regulation of gene expression by lncRNA in neurogenesis.


Sign in / Sign up

Export Citation Format

Share Document