Effect of changes in intestinal flora induced by short-term antibiotics administration on the pharmacokinetics of drugs, and glucose and lipid metabolism

2018 ◽  
Vol 33 (1) ◽  
pp. S56
Author(s):  
Takuya Kuno ◽  
Shingo Ito ◽  
Sumio Ohtsuki
1993 ◽  
Vol 128 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Per H Andersen ◽  
Bjørn Richelsen ◽  
Jens Bak ◽  
Ole Schmitz ◽  
Niels S Sørensen ◽  
...  

In a short-term (eight days) double-blind crossover study involving 10 obese patients, the effects of dexfenfluramine on glucose and lipid metabolism were examined. The protocol comprised whole body in vivo measurements (hyperinsulinemic euglycemic clamp in combination with indirect calorimetry) and in vitro studies of isolated adipocytes (lipolysis and glucose transport). All study participants were weight stable during the study period (103.1±3.2, placebo vs 103.3±3.1 kg, dexfenfluramine, NS). The following parameters were significantly reduced after dexfenfluramine treatment: fasting levels of plasma glucose (6.2±0.2 vs 5.7±0.2 mmol/l, p<0.01), serum insulin (168.0±14.5 vs 138.9±7.9 pmol/l, p<0.05), serum C-peptide (0.68±0.03 vs 0.58±0.02 nmol/l, p<0.05) and total serum cholesterol (6.07±0.41 vs 5.48±0.38 mmol/l, p< 0.01). In the basal state glucose oxidation rate was significantly reduced by 36% (p<0.001), whereas non-oxidative glucose disposal was significantly increased by 41% (p<0.01), following dexfenfluramine treatment. Insulin-stimulated (2 mU·kg−1·min−1) glucose disposal rate tended to be increased (18%, p=0.10) after dexfenfluramine. In conclusion, dexfenfluramine possesses beneficial regulatory effects on glucose and lipid metabolism in non-diabetic obese patients, independently of weight loss.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tabusi Manaer ◽  
Lan Yu ◽  
Xin-Hua Nabi ◽  
Dinareer Dilidaxi ◽  
Lu Liu ◽  
...  

Abstract Background Probiotics may have beneficial effects on patients with type 2 diabetes mellitus (T2DM). We separated 4 lactobacillus and 1 saccharomycetes from traditional fermented cheese whey (TFCW) and prepared composite probiotics from camel milk (CPCM) and investigated their effects on glucose and lipid metabolism, liver and renal function and gut microbiota in db/db mice. Methods CPCM was prepared in the laboratory and 40 db/db mice were randomly divided into 4 groups as metformin, low-dose and high-dose group and model group, and treated for 6 weeks. In addition, 10 C57BL/Ks mice as normal control group were used for comparison. Fasting blood glucose (FBG), body weight (BW), oral glucose tolerance test (OGTT), glycated hemoglobin (HbAlc), C-peptide (CP), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), 24 h urinary microalbumin (24 h malb), urine ketone, urine sugar, pancreas and liver tissue and intestinal flora were tested. Results Compared to diabetic group, high dose CPCM significantly decreased FBG, OGTT, HbAlc and IRI, plasma TC, TG, LDL-C, 24 h malb, urine ketone and urine sugar, increased CP, HDL-C levels, improved the liver and kidney function, protected the function of islets, also increased intestinal tract lactic acid bacteria and Bifidobacterium, decreased Escherichia in db/db mice. Conclusion CPCM decreased FBG, OGTT and HbAlc, increased CP, modulated lipid metabolism and improved liver and kidney protected injury in db/db mice, which may be related to various probiotics acting through protecting the function of islets and regulating intestinal flora disturbance.


2021 ◽  
Vol 22 (11) ◽  
pp. 6149
Author(s):  
Nathan Favalier ◽  
Vincent Véron ◽  
Michael Marchand ◽  
Anne Surget ◽  
Patrick Maunas ◽  
...  

Rainbow trout are considered as a poor user of dietary carbohydrates, displaying persistent postprandial hyperglycaemia when fed a diet containing high amounts of carbohydrates. While this phenotype is well-described in juveniles, less attention was given to broodstock. Our objective was to assess for the first time the short-term consequences of feeding mature female and male, and neomale trout with a low-protein high-carbohydrate diet on glucose and lipid metabolism. Fish were fed for two days with a diet containing either no or 32% of carbohydrates. We analysed plasma metabolites, mRNA levels and enzymatic activities of glycolysis, gluconeogenesis, de novo lipogenesis and β-oxidation in the liver. Results demonstrated that the glucose and lipid metabolism were regulated by the nutritional status in all sexes, irrespective of the carbohydrate intake. These data point out that carbohydrate intake during a short period (5 meals) at 8 °C did not induce specific metabolic changes in broodstock. Finally, we demonstrated, for the first time, sex differences regarding the consequences of two days of feeding on glucose and lipid metabolism.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Talia M Grala ◽  
Claire V C Phyn ◽  
Jane K Kay ◽  
Agustin G. Rius ◽  
Mathew D. Littlejohn ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zili Lei ◽  
Huijuan Wu ◽  
Yanhong Yang ◽  
Qing Hu ◽  
Yuting Lei ◽  
...  

The lower incidence of metabolic diseases of women than men and the increasing morbidity of metabolic disorders of menopausal women indicated that hormones produced by ovaries may affect homeostasis of glucose and lipid metabolism, but the underlying mechanisms remain unclear. To explore the functions of ovaries on regulating glucose and lipid metabolism in females, 8 weeks old C57BL/6 mice were preformed ovariectomy and administrated with normal food diet (NFD) or high fat diet (HFD). Six weeks after ovariectomy, blood biochemical indexes were tested and the morphology and histology of livers were checked. The expression levels of genes related to glucose and lipid metabolism in liver were detected through transcriptome analysis, qPCR and western blot assays. 16S rDNA sequence was conducted to analyze the gut microbiota of mice with ovariectomy and different diets. The serum total cholesterol (TC) was significantly increased in ovariectomized (OVX) mice fed with NFD (OVXN), and serum low density lipoprotein-cholesterol (LDL-C) was significantly increased in both OVXN mice and OVX mice fed with HFD (OVXH). The excessive glycogen storage was found in livers of 37.5% mice from OVXN group, and lipid accumulation was detected in livers of the other 62.5% OVXN mice. The OVXN group was further divided into OVXN-Gly and OVXN-TG subgroups depending on histological results of the liver. Lipid drops in livers of OVXH mice were more and larger than other groups. The expression level of genes related with lipogenesis was significantly increased and the expression level of genes related with β-oxidation was significantly downregulated in the liver of OVXN mice. Ovariectomy also caused the dysbiosis of intestinal flora of OVXN and OVXH mice. These results demonstrated that hormones generated by ovaries played important roles in regulating hepatic glucose and lipid metabolism and communicating with the gut microbiota in females.


1984 ◽  
Vol 12 (5) ◽  
pp. 791-792
Author(s):  
DAVID J. MOORE ◽  
FIONA J. WHITE ◽  
PETER R. FLATT ◽  
DENNIS V. PARKE

2010 ◽  
Vol 49 (10) ◽  
pp. 897-902 ◽  
Author(s):  
Yasuo Kuroki ◽  
Hiroshi Kaji ◽  
Seiji Kawano ◽  
Fumio Kanda ◽  
Yutaka Takai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document