Small molecules and small molecule drugs in regenerative medicine

2014 ◽  
Vol 19 (6) ◽  
pp. 801-808 ◽  
Author(s):  
Baisong Lu ◽  
Anthony Atala
2019 ◽  
Vol 4 (9) ◽  
Author(s):  
Abdulkarim Najjar ◽  
Abdurrahman Olğaç ◽  
Fidele Ntie-Kang ◽  
Wolfgang Sippl

Abstract Natural product (NP)-derived drugs can be extracts, biological macromolecules, or purified small molecule substances. Small molecule drugs can be originally purified from NPs, can represent semisynthetic molecules, natural fragments containing small molecules, or are fully synthetic molecules that mimic natural compounds. New semisynthetic NP-like drugs are entering the pharmaceutical market almost every year and reveal growing interests in the application of fragment-based approaches for NPs. Thus, several NP databases were constructed to be implemented in the fragment-based drug design (FBDD) workflows. FBDD has been established previously as an approach for hit identification and lead generation. Several biophysical and computational methods are used for fragment screening to identify potential hits. Once the fragments within the binding pocket of the protein are identified, they can be grown, linked, or merged to design more active compounds. This work discusses applications of NPs and NP scaffolds to FBDD. Moreover, it briefly reviews NP databases containing fragments and reports on case studies where the approach has been successfully applied for the design of antimalarial and anticancer drug candidates.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
James O’Connell ◽  
John Porter ◽  
Boris Kroeplien ◽  
Tim Norman ◽  
Stephen Rapecki ◽  
...  

AbstractTumour necrosis factor (TNF) is a cytokine belonging to a family of trimeric proteins; it has been shown to be a key mediator in autoimmune diseases such as rheumatoid arthritis and Crohn’s disease. While TNF is the target of several successful biologic drugs, attempts to design small molecule therapies directed to this cytokine have not led to approved products. Here we report the discovery of potent small molecule inhibitors of TNF that stabilise an asymmetrical form of the soluble TNF trimer, compromising signalling and inhibiting the functions of TNF in vitro and in vivo. This discovery paves the way for a class of small molecule drugs capable of modulating TNF function by stabilising a naturally sampled, receptor-incompetent conformation of TNF. Furthermore, this approach may prove to be a more general mechanism for inhibiting protein–protein interactions.


2020 ◽  
Vol 21 (15) ◽  
pp. 5262 ◽  
Author(s):  
Qingxin Li ◽  
CongBao Kang

Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. We also demonstrate that structural biology provides insights into the function of a target and identifies a druggable site for rational drug design.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1398
Author(s):  
Valerio Caputo ◽  
Claudia Strafella ◽  
Terenzio Cosio ◽  
Caterina Lanna ◽  
Elena Campione ◽  
...  

Pharmacogenomic studies allowed the reasons behind the different responses to treatments to be understood. Its clinical utility, in fact, is demonstrated by the reduction in adverse drug reaction incidence and the improvement of drug efficacy. Pharmacogenomics is an important tool that is able to improve the drug therapy of different disorders. In particular, this review will highlight the current pharmacogenomics knowledge about biologics and small-molecule treatments for psoriasis. To date, studies performed on genes involved in the metabolism of biological drugs (tumor necrosis factor inhibitors and cytokines inhibitors) and small molecules (apremilast, dimethyl fumarate, and tofacitinib) have provided conflicting results, and further investigations are necessary in order to establish a set of biomarkers to be introduced into clinical practice.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1855 ◽  
Author(s):  
Rongjun He ◽  
Brian Finan ◽  
John P. Mayer ◽  
Richard D. DiMarchi

Peptides constitute molecular diversity with unique molecular mechanisms of action that are proven indispensable in the management of many human diseases, but of only a mere fraction relative to more traditional small molecule-based medicines. The integration of these two therapeutic modalities offers the potential to enhance and broaden pharmacology while minimizing dose-dependent toxicology. This review summarizes numerous advances in drug design, synthesis and development that provide direction for next-generation research endeavors in this field. Medicinal studies in this area have largely focused upon the application of peptides to selectively enhance small molecule cytotoxicity to more effectively treat multiple oncologic diseases. To a lesser and steadily emerging extent peptides are being therapeutically employed to complement and diversify the pharmacology of small molecule drugs in diseases other than just cancer. No matter the disease, the purpose of the molecular integration remains constant and it is to achieve superior therapeutic outcomes with diminished adverse effects. We review linker technology and conjugation chemistries that have enabled integrated and targeted pharmacology with controlled release. Finally, we offer our perspective on opportunities and obstacles in the field.


Author(s):  
Quinlin M. Hanson ◽  
Kelli M. Wilson ◽  
Min Shen ◽  
Zina Itkin ◽  
Richard T. Eastman ◽  
...  

AbstractThe COVID-19 pandemic, caused by SARS-CoV-2, is a pressing public health emergency garnering rapid response from scientists across the globe. Host cell invasion is initiated through direct binding of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Disrupting the spike-ACE2 interaction is a potential therapeutic target for treating COVID-19. We have developed a proximity-based AlphaLISA assay to measure binding of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) to ACE2. Utilizing this assay platform, a drug-repurposing screen against 3,384 small molecule drugs and pre-clinical compounds was performed, yielding 25 high-quality, small-molecule hits that can be evaluated in cell-based models. This established AlphaLISA RBD-ACE2 platform can facilitate evaluation of biologics or small molecules that can perturb this essential viral-host interaction to further the development of interventions to address the global health pandemic.


2015 ◽  
Vol 1 (6) ◽  
pp. e1500008 ◽  
Author(s):  
Miao Zhang ◽  
Xuan-Yu Meng ◽  
Ji-fang Zhang ◽  
Meng Cui ◽  
Diomedes E. Logothetis

Phosphatidylinositol 4,5-bisphosphate (PIP2) directly interacts with the small-conductance Ca2+-activated K+ 2-a (SK2-a) channel/calmodulin complex, serving as a critical element in the regulation of channel activity. We report that changes of protein conformation in close proximity to the PIP2 binding site induced by a small-molecule SK channel modulator, NS309, can effectively enhance the interaction between the protein and PIP2 to potentiate channel activity. This novel modulation of PIP2 sensitivity by small-molecule drugs is likely not to be limited in its application to SK channels, representing an intriguing strategy to develop drugs controlling the activity of the large number of PIP2-dependent proteins.


Sign in / Sign up

Export Citation Format

Share Document