scholarly journals Synthesis of Aloe vera Conjugated Silver Nanoparticles for use against Multidrug Resistant Microorganisms

Author(s):  
Hammad Arshad ◽  
Misbah Saleem ◽  
Usman Pasha ◽  
Saima Sadaf
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 514
Author(s):  
David Medina-Cruz ◽  
Ada Vernet-Crua ◽  
Ebrahim Mostafavi ◽  
María Ujué González ◽  
Lidia Martínez ◽  
...  

Cancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges. In this work, an approach for the synthesis of tellurium (Te) nanostructures in aqueous media has been developed using aloe vera (AV) extracts as a unique reducing and capping agent. Te-based nanoparticles (AV-TeNPs), with sizes between 20 and 60 nm, were characterized in terms of physicochemical properties and tested for potential biomedical applications. A significant decay in bacterial growth after 24 h was achieved for both Methicillin-resistant Staphylococcus aureus and multidrug-resistant Escherichia coli at a relative low concentration of 5 µg/mL, while there was no cytotoxicity towards human dermal fibroblasts after 3 days of treatment. AV-TeNPs also showed anticancer properties up to 72 h within a range of concentrations between 5 and 100 µg/mL. Consequently, here, we present a novel and green approach to produce Te-based nanostructures with potential biomedical applications, especially for antibacterial and anticancer applications.


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Emerson Danguy Cavassin ◽  
Luiz Francisco Poli de Figueiredo ◽  
José Pinhata Otoch ◽  
Marcelo Martins Seckler ◽  
Roberto Angelo de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document