New bicyclic brominated furanones as potent autoinducer-2 quorum-sensing inhibitors against bacterial biofilm formation

2017 ◽  
Vol 137 ◽  
pp. 76-87 ◽  
Author(s):  
Ji Su Park ◽  
Eun-Ju Ryu ◽  
Linzi Li ◽  
Bong-Kyu Choi ◽  
B. Moon Kim
2014 ◽  
Vol 22 (4) ◽  
pp. 1313-1317 ◽  
Author(s):  
Sijie Yang ◽  
Osama A. Abdel-Razek ◽  
Fei Cheng ◽  
Debjyoti Bandyopadhyay ◽  
Gauri S. Shetye ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


2008 ◽  
Vol 74 (6) ◽  
pp. 1798-1804 ◽  
Author(s):  
Henriette Geier ◽  
Serge Mostowy ◽  
Gerard A. Cangelosi ◽  
Marcel A. Behr ◽  
Timothy E. Ford

ABSTRACT Mycobacterium avium is an environmental organism and opportunistic pathogen with inherent resistance to drugs, environmental stresses, and the host immune response. To adapt to these disparate conditions, M. avium must control its transcriptional response to environmental cues. M. avium forms biofilms in various environmental settings, including drinking water pipes and potable water reservoirs. In this study, we investigated the role of the universal signaling molecule autoinducer-2 (AI-2) in biofilm formation by M. avium. The addition of the compound to planktonic M. avium cultures resulted in increased biofilm formation. Microarray and reverse transcriptase PCR studies revealed an upregulation of the oxidative stress response upon addition of AI-2. This suggests that the response to AI-2 might be related to oxidative stress, rather than quorum sensing. Consistent with this model, addition of hydrogen peroxide, a known stimulus of the oxidative stress response, to M. avium cultures resulted in elevated biofilm formation. These results suggest that AI-2 does not act as a quorum-sensing signal in M. avium. Instead, biofilm formation is triggered by environmental stresses of biotic and abiotic origins and AI-2 may exert effects on that level.


Metallomics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1104-1114 ◽  
Author(s):  
Beatriz Gómez-Gómez ◽  
Lucia Arregui ◽  
Susana Serrano ◽  
Antonio Santos ◽  
Teresa Pérez-Corona ◽  
...  

The effect of SeNPs and TeNPs on different processes regulated by QS such as violacein production and biofilm formation is presented. The data open new strategies for controlling persistent infections.


2020 ◽  
Vol 104 (16) ◽  
pp. 7177-7185
Author(s):  
Qin Xiong ◽  
Di Liu ◽  
Huihui Zhang ◽  
Xiaoyan Dong ◽  
Guishan Zhang ◽  
...  

2003 ◽  
Vol 71 (4) ◽  
pp. 1972-1979 ◽  
Author(s):  
Justin Merritt ◽  
Fengxia Qi ◽  
Steven D. Goodman ◽  
Maxwell H. Anderson ◽  
Wenyuan Shi

ABSTRACT Quorum sensing is a bacterial mechanism for regulating gene expression in response to changes in population density. Many bacteria are capable of acyl-homoserine lactone-based or peptide-based intraspecies quorum sensing and luxS-dependent interspecies quorum sensing. While there is good evidence about the involvement of intraspecies quorum sensing in bacterial biofilm, little is known about the role of luxS in biofilm formation. In this study, we report for the first time that luxS-dependent quorum sensing is involved in biofilm formation of Streptococcus mutans. S. mutans is a major cariogenic bacterium in the multispecies bacterial biofilm commonly known as dental plaque. An ortholog of luxS for S. mutans was identified using the data available in the S. mutans genome project (http://www.genome.ou.edu/smutans.html ). Using an assay developed for the detection of the LuxS-associated quorum sensing signal autoinducer 2 (AI-2), it was demonstrated that this ortholog was able to complement the luxS negative phenotype of Escherichia coli DH5α. It was also shown that AI-2 is indeed produced by S. mutans. AI-2 production is maximal during mid- to late-log growth in batch culture. Mutant strains devoid of the luxS gene were constructed and found to be defective in producing the AI-2 signal. There are also marked phenotypic differences between the wild type and the luxS mutants. Microscopic analysis of in vitro-grown biofilm structure revealed that the luxS mutant biofilms adopted a much more granular appearance, rather than the relatively smooth, confluent layer normally seen in the wild type. These results suggest that LuxS-dependent signal may play an important role in biofilm formation of S. mutans.


Sign in / Sign up

Export Citation Format

Share Document