scholarly journals Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP

2017 ◽  
Vol 13 ◽  
pp. 26-42 ◽  
Author(s):  
Taru Olsson ◽  
Matti Kämäräinen ◽  
Darwin Santos ◽  
Teija Seitola ◽  
Heikki Tuomenvirta ◽  
...  
2015 ◽  
Vol 19 (11) ◽  
pp. 4609-4618 ◽  
Author(s):  
H. Xu ◽  
Y. Luo

Abstract. Understanding the heterogeneity of climate change and its impacts on annual and seasonal discharge and the difference between median flow and extreme flow in different climate regions is of utmost importance to successful water management. To quantify the spatial and temporal heterogeneity of climate change impacts on hydrological processes, this study simulated river discharge in the River Huangfuchuan in semi-arid northern China and in the River Xiangxi in humid southern China. The study assessed the uncertainty in projected discharge for three time periods (2020s, 2050s and 2080s) using seven equally weighted GCMs (global climate models) for the SRES (Special Reports on Emissions Scenarios) A1B scenario. Climate projections that were applied to semi-distributed hydrological models (Soil Water Assessment Tools, SWAT) in both catchments showed trends toward warmer and wetter conditions, particularly for the River Huangfuchuan. Results based on seven GCMs' projections indicated changes from −1.1 to 8.6 °C and 0.3 to 7.0 °C in seasonal temperature and changes from −29 to 139 % and −32 to 85 % in seasonal precipitation in the rivers Huangfuchuan and Xiangxi, respectively. The largest increases in temperature and precipitation in both catchments were projected in the spring and winter seasons. The main projected hydrologic impact was a more pronounced increase in annual discharge in the River Huangfuchuan than in the River Xiangxi. Most of the GCMs projected increased discharge in all seasons, especially in spring, although the magnitude of these increases varied between GCMs. The peak flows were projected to appear earlier than usual in the River Huangfuchuan and later than usual in the River Xiangxi, while the GCMs were fairly consistent in projecting increased extreme flows in both catchments with varying magnitude compared to median flows. For the River Huangfuchuan in the 2080s, median flow changed from −2 to 304 %, compared to a −1 to 145 % change in high flow (Q05 exceedance threshold). For the River Xiangxi, low flow (Q95 exceedance threshold) changed from −1 to 77 % and high flow changed from −1 to 62 %, while median flow changed from −4 to 23 %. The uncertainty analysis provided an improved understanding of future hydrologic behavior in the watershed. Furthermore, this study indicated that the uncertainty constrained by GCMs was critical and should always be considered in analysis of climate change impacts and adaptation.


2011 ◽  
Vol 15 (2) ◽  
pp. 585-595 ◽  
Author(s):  
M. T. Nóbrega ◽  
W. Collischonn ◽  
C. E. M. Tucci ◽  
A. R. Paz

Abstract. We quantify uncertainty in the impacts of climate change on the discharge of Rio Grande, a major tributary of the Paraná River in South America and one of the most important basins in Brazil for water supply and hydro-electric power generation. We consider uncertainty in climate projections associated with the greenhouse-gas emission scenarios (A1b, A2, B1, B2) and increases in global mean air temperature of 1 to 6° C for the HadCM3 GCM (Global Circulation Model) as well as uncertainties related to GCM structure. For the latter, multimodel runs using 6 GCMs (CCCMA CGCM31, CSIRO Mk30, IPSL CM4, MPI ECHAM5, NCAR CCSM30, UKMO HadGEM1) and HadCM3 as baseline, for a +2° C increase in global mean temperature. Pattern-scaled GCM-outputs are applied to a large-scale hydrological model (MGB-IPH) of Rio Grande Basin. Based on simulations using HadCM3, mean annual river discharge increases, relative to the baseline or control run period (1961–1990), by +5% to +10% under the SRES emissions scenarios and from +8% to +51% with prescribed increases in global mean air temperature of between 1 and 6° C. Substantial uncertainty in projected changes to mean river discharge (−28% to +13%) under the 2° C warming scenario is, however, associated with the choice of GCM. We conclude that, in the case of Rio Grande Basin, the most important source of uncertainty derives from the GCM rather than the emission scenario or the magnitude of rise in mean global temperature.


2011 ◽  
Vol 15 (5) ◽  
pp. 1483-1492 ◽  
Author(s):  
R. Thorne

Abstract. Like many high latitude areas, the mountainous region of subarctic Canada has experienced recent warming and is an area of large inter-annual temperature variations, most notably during the winter. Quantifying how climate tendencies affect streamflow, especially in the spring melt season, is critical not only to regional water resource management, but to understanding the influence of freshwater on the Arctic sea-ice cover and global climate system. The impact of projected atmospheric warming on the discharge of the Liard River is unclear. Here, uncertainty in climate projections associated with GCM structure (2 °C prescribed warming) and magnitude of increases in global mean air temperature (1 to 6 °C) on the river discharge are assessed using a well-tested, semi-distributed hydrological model. Analyses have shown that the hydrological impacts are highly dependant on the GCM scenario. Uncertainties between the GCM scenarios are driven by the inconsistencies in projected spatial variability and magnitude of precipitation, rather than warming temperatures. Despite these uncertainties, the entire scenario simulations project that the subarctic nival regime will be preserved in the future, but the magnitude of change in river discharge is highly uncertain. Generally, spring freshet will arrive earlier, autumn to spring discharge will increase whereas summer flow will decrease, leading to an overall increase in annual discharge.


2010 ◽  
Vol 7 (5) ◽  
pp. 6823-6850 ◽  
Author(s):  
H. Xu ◽  
R. G. Taylor ◽  
Y. Xu

Abstract. Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the River Yangtze and Yellow Basins that feature contrasting climate regimes (humid and semi-arid). Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1), SRES emissions scenarios (A1B, A2, B1, B2) and prescribed increases in global mean air temperature (1 °C to 6 °C). Climate projections, applied to semi-distributed hydrological models (SWAT 2005) in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990), for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C, respectively. Intra-annual changes include increases in flood (Q05) discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93%) in dry season (Q95) discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13% to 17% rise from baseline) but substantial (73% to 121%) for the River Huangfuchuan. With one minor exception of a slight (−2%) decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is great uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05) discharges (−1% to 41% under SRES A1B and −3% to 41% under 2° global warming) and dry season (Q95) discharges (2% to 55% under SRES A1B and 2% to 39% under 2° global warming). For the River Huangfuchuan, all GCMs project a rise in the Q05 flow but there is substantial uncertainty in the magnitude of this rise (7% to 70% under SRES A1B and 2% to 57% under 2° global warming). Greatest differences in the projected hydrologic changes are associated with GCMs in both catchments than emission scenarios and climate sensitivity. Critically, estimated uncertainty in projections of mean annual flows is less than that calculated for extreme (Q05, Q95) flows. This research suggest that the common approach of reporting of climate change impacts on river in terms of mean annual flows may mask the magnitude of uncertainty in flows of most importance to water managers.


2010 ◽  
Vol 7 (3) ◽  
pp. 3129-3157 ◽  
Author(s):  
R. Thorne

Abstract. Freshwater inputs from the Mackenzie River into the Arctic Ocean contribute to the control of oceanic dynamics and sea ice cover duration. Half of the annual runoff from the Mackenzie River drains from mountainous regions, where the Liard River, with a drainage area of 275 000 km2, is especially influential. The impact of projected atmospheric warming on the discharge of the Liard River is unclear. Here, uncertainty in climate projections associated with GCM structure (2 °C prescribed warming) and magnitude of increases in global mean air temperature (1 to 6 °C) on the river discharge are assessed using SLURP, a well-tested hydrological model. Most climate projections indicate (1) warming in this subarctic environment that is greater than the global mean and (2) an increase in precipitation across the basin. These changes lead to an earlier spring freshet (1 to 12 days earlier), a decrease in summer runoff (up to 22%) due to enhanced evaporation, and an increase in autumn flow (up to 48%), leading to higher annual discharge and more freshwater input from the Liard River to the Arctic Ocean. All simulations project that the subarctic nival regime will be preserved in the future but the magnitude of changes in river discharge is highly uncertain (ranging from a decrease of 3% to an increase of 15% in annual runoff), due to differences in GCM projections of basin-wide temperature and precipitation.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Jingwen Xu ◽  
Qun Zhang ◽  
Shuang Liu ◽  
Shaojie Zhang ◽  
Shengjie Jin ◽  
...  

2012 ◽  
Vol 13 (1) ◽  
pp. 140-154 ◽  
Author(s):  
F. C. Sperna Weiland ◽  
L. P. H. van Beek ◽  
J. C. J. Kwadijk ◽  
M. F. P. Bierkens

Abstract The representation of hydrological processes in land surface schemes (LSSs) has recently been improved. In this study, the usability of GCM runoff for river discharge modeling is evaluated by validating the mean, timing, and amplitude of the modeled annual discharge cycles against observations. River discharge was calculated for six large rivers using runoff, precipitation, and actual evaporation from the GCMs ECHAM5 and Hadley Centre Global Environmental Model version 2 (HadGEM2). Four methods were applied: 1) accumulation of GCM runoff, 2) routing of GCM runoff, 3) routing of GCM runoff combined with temporal storage of subsurface runoff, and 4) offline hydrological modeling with the global distributed hydrological model PCRaster Global Water Balance (PCR-GLOBWB) using meteorological data from the GCMs as forcing. The quality of discharge generated by all four methods is highly influenced by the quality of the GCM data. In small catchments, the methods that include runoff routing perform equally well, although offline modeling with PRC-GLOBWB outperforms the other methods for ECHAM5 data. For larger catchments, routing introduces realistic travel times, decreased day-to-day variability, and it reduces extremes. Complexity of the LSS of both GCMs is comparable to the complexity of the hydrological model. However, in HadGEM2 the absence of subgrid variability for saturated hydraulic conductivity results in a large subsurface runoff flux and a low seasonal variability in the annual discharge cycle. The analysis of these two GCMs shows that when LSSs are tuned to reproduce realistic water partitioning at the grid scale and a routing scheme is also included, discharge variability and change derived from GCM runoff could be as useful as changes derived from runoff obtained from offline simulations using large-scale hydrological models.


2011 ◽  
Vol 15 (1) ◽  
pp. 333-344 ◽  
Author(s):  
H. Xu ◽  
R. G. Taylor ◽  
Y. Xu

Abstract. Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the Yangtze and Yellow River Basins that feature contrasting climate regimes (humid and semi-arid). Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1), SRES emissions scenarios (A1B, A2, B1, B2) and prescribed increases in global mean air temperature (1 °C to 6 °C). Climate projections, applied to semi-distributed hydrological models (SWAT 2005) in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990), for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C respectively. Intra-annual changes include increases in flood (Q05) discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93%) in dry season (Q95) discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13 to 17% rise from baseline) but substantial (73 to 121%) for the River Huangfuchuan. With one minor exception of a slight (−2%) decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is substantial uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05) discharges (−1 to 41% under SRES A1B and −3 to 41% under 2° global warming) and dry season (Q95) discharges (2 to 55% under SRES A1B and 2 to 39% under 2° global warming). For the River Huangfuchuan, all GCMs project a rise in the Q05 flow but there is substantial uncertainty in the magnitude of this rise (7 to 70% under SRES A1B and 2 to 57% under 2° global warming). Differences in the projected hydrological changes are associated with GCM structure in both catchments exceed uncertainty in emission scenarios. Critically, estimated uncertainty in projections of mean annual flows is less than that calculated for extreme (Q05, Q95) flows. The common approach of reporting of climate change impacts on river in terms of mean annual flows masks the magnitude of uncertainty in flows that are of most importance to water management.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 627 ◽  
Author(s):  
Maria Shahgedanova ◽  
Muhammad Afzal ◽  
Wilfried Hagg ◽  
Vassiliy Kapitsa ◽  
Nikolay Kasatkin ◽  
...  

Impacts of projected climate and glacier change on river discharge in five glacierized catchments in the northern Tien Shan, Kazakhstan are investigated using a conceptual hydrological model HBV-ETH. Regional climate model PRECIS driven by four different GCM-scenario combinations (HadGEM2.6, HadGEM8.5, A1B using HadCM3Q0 and ECHAM5) is used to develop climate projections. Future changes in glaciation are assessed using the Blatter–Pattyn type higher-order 3D coupled ice flow and mass balance model. All climate scenarios show statistically significant warming in the 21st Century. Neither projects statistically significant change in annual precipitation although HadGEM and HadCM3Q0-driven scenarios show 20–37% reduction in July–August precipitation in 2076–2095 in comparison with 1980–2005. Glaciers are projected to retreat rapidly until the 2050s and stabilize afterwards except under the HadGEM8.5 scenario where retreat continues. Glaciers are projected to lose 38–50% of their volume and 34–39% of their area. Total river discharge in July–August, is projected to decline in catchments with low (2–4%) glacierization by 20–37%. In catchments with high glacierization (16% and over), no significant changes in summer discharge are expected while spring discharge is projected to increase. In catchments with medium glacierization (10–12%), summer discharge is expected to decline under the less aggressive scenarios while flow is sustained under the most aggressive HadGEM8.5 scenario, which generates stronger melt.


Sign in / Sign up

Export Citation Format

Share Document