scholarly journals Climate change and its impacts on river discharge in two climate regions in China

2015 ◽  
Vol 19 (11) ◽  
pp. 4609-4618 ◽  
Author(s):  
H. Xu ◽  
Y. Luo

Abstract. Understanding the heterogeneity of climate change and its impacts on annual and seasonal discharge and the difference between median flow and extreme flow in different climate regions is of utmost importance to successful water management. To quantify the spatial and temporal heterogeneity of climate change impacts on hydrological processes, this study simulated river discharge in the River Huangfuchuan in semi-arid northern China and in the River Xiangxi in humid southern China. The study assessed the uncertainty in projected discharge for three time periods (2020s, 2050s and 2080s) using seven equally weighted GCMs (global climate models) for the SRES (Special Reports on Emissions Scenarios) A1B scenario. Climate projections that were applied to semi-distributed hydrological models (Soil Water Assessment Tools, SWAT) in both catchments showed trends toward warmer and wetter conditions, particularly for the River Huangfuchuan. Results based on seven GCMs' projections indicated changes from −1.1 to 8.6 °C and 0.3 to 7.0 °C in seasonal temperature and changes from −29 to 139 % and −32 to 85 % in seasonal precipitation in the rivers Huangfuchuan and Xiangxi, respectively. The largest increases in temperature and precipitation in both catchments were projected in the spring and winter seasons. The main projected hydrologic impact was a more pronounced increase in annual discharge in the River Huangfuchuan than in the River Xiangxi. Most of the GCMs projected increased discharge in all seasons, especially in spring, although the magnitude of these increases varied between GCMs. The peak flows were projected to appear earlier than usual in the River Huangfuchuan and later than usual in the River Xiangxi, while the GCMs were fairly consistent in projecting increased extreme flows in both catchments with varying magnitude compared to median flows. For the River Huangfuchuan in the 2080s, median flow changed from −2 to 304 %, compared to a −1 to 145 % change in high flow (Q05 exceedance threshold). For the River Xiangxi, low flow (Q95 exceedance threshold) changed from −1 to 77 % and high flow changed from −1 to 62 %, while median flow changed from −4 to 23 %. The uncertainty analysis provided an improved understanding of future hydrologic behavior in the watershed. Furthermore, this study indicated that the uncertainty constrained by GCMs was critical and should always be considered in analysis of climate change impacts and adaptation.

2015 ◽  
Vol 12 (7) ◽  
pp. 7099-7126
Author(s):  
H. Xu ◽  
Y. Luo

Abstract. Understanding the heterogeneity of climate change and its impacts on annual and seasonal discharge, and the difference between mean flow and extreme flow in different climate regions is of utmost importance to successful water management. To quantify the spatial and temporal heterogeneity of climate change impacts on hydrological processes, this study simulated river discharge in the River Huangfuchuan in semi-arid northern China and the River Xiangxi in humid southern China. We assessed the uncertainty in projected discharge for three time periods (2020s, 2050s and 2080s) using seven equally weighted GCMs for the SRES A1B scenario. Climate projections that were applied to semi-distributed hydrological models Soil Water Assessment Tools (SWAT) in both catchments showed trends toward warmer and wetter conditions, particularly for the River Huangfuchuan. Results based on seven GCMs' projections indicated −1.1 to 8.6 and 0.3 to 7.0 °C changes in seasonal temperature and −29 to 139 and −32 to 85 % changes in seasonal precipitation in River Huangfuchuan and River Xiangxi, respectively. The largest increases in temperature and precipitation in both catchments were projected in the spring and winter seasons. The main projected hydrologic impact was a more pronounced increase in annual discharge in the River Huangfuchuan than in the River Xiangxi. Most of the GCMs projected increased discharge in all seasons, especially in spring, although the magnitude of these increases varied between GCMs. Peak flows was projected to appear earlier than usual in River Huangfuchuan and later than usual in River Xiangxi. While the GCMs were fairly consistent in projecting increased extreme flows in both catchments, the increases were of varying magnitude compared to mean flows. For River Huangfuchuan in the 2080s, median flow changed from −2 to 304 %, compared to a −1 to 145 % change in high flow (Q05 exceedence threshold). For River Xiangxi, low flow (Q95 exceedence threshold) changed from −1 to 77 % and high flow changed from −1 to 62 %, while mean flow changed from −4 to 23 %. The uncertainty analysis provided an improved understanding of future hydrologic behavior in the watershed. Furthermore, this study indicated that the uncertainty constrained by GCMs was critical and should always be considered in analysis of climate change impacts and adaptation.


2012 ◽  
Vol 32 ◽  
pp. 99-107 ◽  
Author(s):  
J. Korck ◽  
J. Danneberg ◽  
W. Willems

Abstract. The Inn River basin is a highly relevant study region in terms of potential hydrological impacts of climate change and cross boundary water management tasks in the Alpine Space. Regional analyses in this catchment were performed within the EU co-funded project AdaptAlp. Objective of the study was to gain scientifically based knowledge about impacts of climate change on the water balance and runoff regime for the Inn River basin, this being fundamental for the derivation of adaptation measures. An ensemble of regional climate projections is formed by combinations of global and regional climate models on the basis of both statistical and bias-corrected dynamical downscaling procedures. Several available reference climate datasets for the study region are taken into account. As impact model, the process-oriented hydrological model WaSiM-ETH is set up. As expected, regional climate projections indicate temperature increases for the future in the study area. Projections of precipitation change are less homogenous, especially regarding winter months, though most indicate a decrease in the summer. Hydrological simulation results point towards climate induced changes in the water regime of the study region. The analysis of hydrological projections at both ends of the ensemble bandwidth is a source of adaptation relevant information regarding low-flow and high-flow conditions. According to a "drought-prone scenario", mean monthly low flow could decrease up to −40% in the time frame of 2071–2100. A "high-flow-increase-scenario" points towards an increase in mean monthly high flow in the order of +50% in the winter, whilst showing a decrease in autumn.


2016 ◽  
Vol 20 (7) ◽  
pp. 3027-3041 ◽  
Author(s):  
Long Phi Hoang ◽  
Hannu Lauri ◽  
Matti Kummu ◽  
Jorma Koponen ◽  
Michelle T. H. van Vliet ◽  
...  

Abstract. Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.


2021 ◽  
Author(s):  
Toju Esther Babalola ◽  
Philip Gbenro Oguntunde ◽  
Ayodele Ebenezer Ajayi ◽  
Francis Omowonuola Akinluyi

The changing climate is a concern to sustainable water resources. This study examined climate change impacts on river discharge seasonality in two West African river basins; the Niger river basin and the Hadejia-Jama’are Komadugu-Yobe Basin (HJKYB). The basins have their gauges located within Nigeria and cover the major climatic settings. Here, we set up and validated the hyper resolution global hydrological model PCR-GLOBWB for these rivers. Time series plots as well five performance evaluation metrics such as Kling–Gupta efficiency (KGE),); the ratio of RMSE-observations standard deviation (RSR); per cent bias (PBIAS); the Nash–Sutcliffe Efficiency criteria (NSE); and, the coefficient of determination (r2), were employed to verify the PCR-GLOBWB simulation capability. The validation results showed from satisfactory to very good on individual rivers as specified by PBIAS (−25 to 0.8), NSE (from 0.6 to 0.8), RSR (from 0.62 to 0.4), r2 (from 0.62 to 0.88), and KGE (from 0.69 to 0.88) respectively. The impact assessment was performed by driving the model with climate projections from five global climate models for the representative concentration pathways (RCPs) 4.5 and 8.5. We examined the median and range of expected changes in seasonal discharge in the far future (2070–2099). Our results show that the impacts of climate change cause a reduction in discharge volume at the beginning of the high flow period and an increase in discharge towards the ending of the high flow period relative to the historical period across the selected rivers. In the Niger river basin, at the Lokoja gauge, projected decreases added up to 512 m3/s under RCP 4.5 (June to July) and 3652 m3/s under RCP 8.5 (June to August). The three chosen gauges at the HJKYB also showed similar impacts. At the Gashua gauge, discharge volume increased by 371 m3/s (RCP8.5) and 191 m3/s (RCP4.5) from August to November. At the Bunga gauge, a reduction/increase of -91 m3/s/+84 m3/s (RCP 8.5) and -40 m3/s/+31 m3/s/(RCP 4.5) from June to July/August to October was simulated. While at the Wudil gauge, a reduction/increase in discharge volumes of −39/+133 m3/s (RCP8.5) and −40/133 m3/s (RCP 4.5) from June to August/September to December is projected. This decrease is explained by a delayed start of the rainy season. In all four rivers, projected river discharge seasonality is amplified under the high-end emission scenario (RCP8.5). This finding supports the potential advantages of reduced greenhouse gas emissions for the seasonal river discharge regime. Our study is anticipated to provide useful information to policymakers and river basin development authorities, leading to improved water management schemes within the context of changing climate and increasing need for agricultural expansion.


2010 ◽  
Vol 7 (5) ◽  
pp. 6823-6850 ◽  
Author(s):  
H. Xu ◽  
R. G. Taylor ◽  
Y. Xu

Abstract. Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the River Yangtze and Yellow Basins that feature contrasting climate regimes (humid and semi-arid). Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1), SRES emissions scenarios (A1B, A2, B1, B2) and prescribed increases in global mean air temperature (1 °C to 6 °C). Climate projections, applied to semi-distributed hydrological models (SWAT 2005) in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990), for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C, respectively. Intra-annual changes include increases in flood (Q05) discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93%) in dry season (Q95) discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13% to 17% rise from baseline) but substantial (73% to 121%) for the River Huangfuchuan. With one minor exception of a slight (−2%) decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is great uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05) discharges (−1% to 41% under SRES A1B and −3% to 41% under 2° global warming) and dry season (Q95) discharges (2% to 55% under SRES A1B and 2% to 39% under 2° global warming). For the River Huangfuchuan, all GCMs project a rise in the Q05 flow but there is substantial uncertainty in the magnitude of this rise (7% to 70% under SRES A1B and 2% to 57% under 2° global warming). Greatest differences in the projected hydrologic changes are associated with GCMs in both catchments than emission scenarios and climate sensitivity. Critically, estimated uncertainty in projections of mean annual flows is less than that calculated for extreme (Q05, Q95) flows. This research suggest that the common approach of reporting of climate change impacts on river in terms of mean annual flows may mask the magnitude of uncertainty in flows of most importance to water managers.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 72 ◽  
Author(s):  
Agnidé Emmanuel Lawin ◽  
Rita Hounguè ◽  
Yèkambèssoun N’Tcha M’Po ◽  
Nina Rholan Hounguè ◽  
André Attogouinon ◽  
...  

This work focuses on impacts of climate change on Ouémé River discharge at Bonou outlet based on four global climate models (GCM) over Ouémé catchment from 1971 to 2050. Empirical quantile mapping method is used for bias correction of GCM. Furthermore, twenty-five rain gauges were selected among which are three synoptic stations. The semi-distributed model HEC-HMS (Hydrologic Modeling System from Hydrologic Engineering Center) is used to simulate runoff. As results, HEC-HMS showed ability to simulate runoff while taking into account land use and cover change. In fact, Kling–Gupta Efficiency (KGE) coefficient was 0.94 and 0.91 respectively in calibration and validation. Moreover, Ouémé River discharge is projected to decrease about 6.58 m3/s under Representative Concentration Pathways (RCP 4.5) while an insignificant increasing trend is found under RCP 8.5. Therefore, water resource management infrastructure, especially dam construction, has to be developed for water shortage prevention. In addition, it is essential to account for uncertainties when designing such sensitive infrastructure for flood management.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
I. Diallo ◽  
M. B. Sylla ◽  
F. Giorgi ◽  
A. T. Gaye ◽  
M. Camara

Reliable climate change scenarios are critical for West Africa, whose economy relies mostly on agriculture and, in this regard, multimodel ensembles are believed to provide the most robust climate change information. Toward this end, we analyze and intercompare the performance of a set of four regional climate models (RCMs) driven by two global climate models (GCMs) (for a total of 4 different GCM-RCM pairs) in simulating present day and future climate over West Africa. The results show that the individual RCM members as well as their ensemble employing the same driving fields exhibit different biases and show mixed results in terms of outperforming the GCM simulation of seasonal temperature and precipitation, indicating a substantial sensitivity of RCMs to regional and local processes. These biases are reduced and GCM simulations improved upon by averaging all four RCM simulations, suggesting that multi-model RCM ensembles based on different driving GCMs help to compensate systematic errors from both the nested and the driving models. This confirms the importance of the multi-model approach for improving robustness of climate change projections. Illustrative examples of such ensemble reveal that the western Sahel undergoes substantial drying in future climate projections mostly due to a decrease in peak monsoon rainfall.


2018 ◽  
Vol 56 (6) ◽  
pp. 732
Author(s):  
Anh Thi Van Vu ◽  
Thuc Tran ◽  
Minh Truong Ha ◽  
Lanh Thi Minh Pham

A top-down approach begins with Global Climate Models (GCMs) is a common method for assessing climate change impacts on water resources in river basins. To overcome the coarse resolution of GCMs, dynamic downscaling by regional climate models (RCMs) with bias-correction procedures is utilized with the aim to reflect the meteorological features at the river basin scale. However, the results still entail large uncertainties. This paper examines the ability to capture the observed baseline temperature and precipitation (1986-2005) in the Ba River Basin from GCM outputs, RCM outputs, bias-corrected GCM outputs and bias-corrected RCM outputs by analyzing statistical indicators between historical simulations and observed data in 4 temperature and 6 rainfall stations. Bias-corrected results of both GCM and RCM have significantly smaller errors compared to the unbias-corrected ones. The uncertainty of future climate projection for the mid and late 21th century of the bias-corrected GCMs and RCMs are evaluated. It is found that there is still uncertainty in projected results. A concept of “Decision-Scaling” which combines top-down and bottom-up approaches is proposed to assess the climate change impacts on hydrological system to take into account uncertainties of climate projections by models.


Author(s):  
Jennifer A. Curtis ◽  
Lorraine E. Flint ◽  
Michelle A. Stern ◽  
Jack Lewis ◽  
Randy D. Klein

AbstractIn Humboldt Bay, tectonic subsidence exacerbates sea-level rise (SLR). To build surface elevations and to keep pace with SLR, the sediment demand created by subsidence and SLR must be balanced by an adequate sediment supply. This study used an ensemble of plausible future scenarios to predict potential climate change impacts on suspended-sediment discharge (Qss) from fluvial sources. Streamflow was simulated using a deterministic water-balance model, and Qss was computed using statistical sediment-transport models. Changes relative to a baseline period (1981–2010) were used to assess climate impacts. For local basins that discharge directly to the bay, the ensemble means projected increases in Qss of 27% for the mid-century (2040–2069) and 58% for the end-of-century (2070–2099). For the Eel River, a regional sediment source that discharges sediment-laden plumes to the coastal margin, the ensemble means projected increases in Qss of 53% for the mid-century and 99% for the end-of-century. Climate projections of increased precipitation and streamflow produced amplified increases in the regional sediment supply that may partially or wholly mitigate sediment demand caused by the combined effects of subsidence and SLR. This finding has important implications for coastal resiliency. Coastal regions with an increasing sediment supply may be more resilient to SLR. In a broader context, an increasing sediment supply from fluvial sources has global relevance for communities threatened by SLR that are increasingly building resiliency to SLR using sediment-based solutions that include regional sediment management, beneficial reuse strategies, and marsh restoration.


2020 ◽  
Vol 4 ◽  
Author(s):  
Stewart A. Jennings ◽  
Ann-Kristin Koehler ◽  
Kathryn J. Nicklin ◽  
Chetan Deva ◽  
Steven M. Sait ◽  
...  

The contribution of potatoes to the global food supply is increasing—consumption more than doubled in developing countries between 1960 and 2005. Understanding climate change impacts on global potato yields is therefore important for future food security. Analyses of climate change impacts on potato compared to other major crops are rare, especially at the global scale. Of two global gridded potato modeling studies published at the time of this analysis, one simulated the impacts of temperature increases on potential potato yields; the other did not simulate the impacts of farmer adaptation to climate change, which may offset negative climate change impacts on yield. These studies may therefore overestimate negative climate change impacts on yields as they do not simultaneously include CO2 fertilisation and adaptation to climate change. Here we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM crop model and the ISI-MIP ensemble of global climate models. Simulations include adaptations to climate change through varying planting windows and varieties and CO2 fertilisation, unlike previous global potato modeling studies. Results show significant skill in reproducing observed national scale yields in Europe. Elsewhere, correlations are generally positive but low, primarily due to poor relationships between national scale observed yields and climate. Future climate simulations including adaptation to climate change through changing planting windows and crop varieties show that yields are expected to increase in most cases as a result of longer growing seasons and CO2 fertilisation. Average global yield increases range from 9 to 20% when including adaptation. The global average yield benefits of adaptation to climate change range from 10 to 17% across climate models. Potato agriculture is associated with lower green house gas emissions relative to other major crops and therefore can be seen as a climate smart option given projected yield increases with adaptation.


Sign in / Sign up

Export Citation Format

Share Document