Maximum energy output chemical pump configuration with an infinite-low- and a finite-high-chemical potential mass reservoirs

2020 ◽  
Vol 223 ◽  
pp. 113261 ◽  
Author(s):  
Lingen Chen ◽  
Huijun Feng ◽  
Yanlin Ge
Author(s):  
Dan Xia ◽  
Lingen Chen ◽  
Fengrui Sun

An isothermal endoreversible four-reservoir chemical pump cycle operating between a finite potential capacity high-chemical-potential mass reservoir and three infinite potential capacity mass reservoirs is established in this paper. Optimal control theory is applied to determine the optimal cycle configuration corresponding to the maximum energy output per cycle for the fixed total cycle time and transferred energy of high-chemical-potential mass reservoir in which the mass transfer between working fluid and mass reservoirs obey linear mass transfer law. The optimal cycle configuration is an isothermal endoreversible four-reservoir chemical pump cycle, in which the chemical potential (the concentration) of the key component in the finite potential capacity high-chemical-potential mass reservoir and that in the working fluid change nonlinearly with time and the difference between the chemical potential (the ratio of the concentration) of the key component in the finite potential capacity mass reservoir and (to) that in the working fluid is a constant, and the chemical potentials (the concentration) of the key component in the working fluid at the infinite potential capacity mass reservoir sides are also constants. Moreover, the numerical example is provided to reveal the influences of concentration and chemical potential change of the finite potential capacity high-chemical-potential mass reservoir on the optimal configuration of the four-reservoir chemical pump cycle. Then, a unified description of various isothermal endoreversible chemical cycles with linear mass transfer law is obtained. They include ten type of isothermal endoreversible chemical cycles: four-reservoir chemical pumps with finite potential capacity mass reservoirs and infinite potential capacity mass reservoirs, four-reservoir chemical potential transformers with finite potential capacity mass reservoir and infinite potential capacity mass reservoirs, three- reservoir chemical pumps with finite potential capacity mass reservoirs and infinite potential capacity mass reservoirs, three-reservoir chemical potential transformers with finite potential capacity mass reservoir and infinite potential capacity mass reservoirs, two-reservoir chemical pump with infinite potential capacity mass reservoirs, and chemical engine with infinite potential capacity mass reservoirs. The results can provide some guidelines for optimal design and operation of real chemical cycles and devices.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2870 ◽  
Author(s):  
Jingjing Xue ◽  
Reza Ahmadian ◽  
Roger Falconer

Marine renewable energy, including tidal renewable energy, is one of the less exploited sources of energy that could contribute to energy demand, while reducing greenhouse gas emissions. Amongst several proposals to build tidal range structure (TRS), a tidal lagoon has been proposed for construction in Swansea Bay, in the South West of the UK, but this scheme was recently rejected by the UK government due to the high electricity costs. This decision makes the optimisation of such schemes more important for the future. This study proposes various novel approaches by breaking the operation into small components to optimise the operation of TRS using a widely used 0-D modelling methodology. The approach results in a minimum 10% increase in energy output, without the inclusion of pumping, in comparison to the maximum energy output using a similar operation for all tides. This increase in energy will be approximately 25% more when pumping is included. The optimised operation schemes are used to simulate the lagoon operation using a 2-D model and the differences between the results are highlighted.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2018 ◽  
Vol 175 ◽  
pp. 07042 ◽  
Author(s):  
Philipp Scior ◽  
Lorenz von Smekal ◽  
Dominik Smith

We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic analysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Eli Shlizerman ◽  
Edwin Ding ◽  
Matthew O. Williams ◽  
J. Nathan Kutz

The onset of multipulsing, a ubiquitous phenomenon in laser cavities, imposes a fundamental limit on the maximum energy delivered per pulse. Managing the nonlinear penalties in the cavity becomes crucial for increasing the energy and suppressing the multipulsing instability. A proper orthogonal decomposition (POD) allows for the reduction of governing equations of a mode-locked laser onto a low-dimensional space. The resulting reduced system is able to capture correctly the experimentally observed pulse transitions. Analysis of these models is used to explain the sequence of bifurcations that are responsible for the multipulsing instability in the master mode-locking and the waveguide array mode-locking models. As a result, the POD reduction allows for a simple and efficient way to characterize and optimize the cavity parameters for achieving maximal energy output.


Author(s):  
Zheng Liu ◽  
Colin Copeland

Abstract A turbocharger turbine is exposed to pulsating flow conditions when it is connected to an engine exhaust system due to the opening and closing of the exhaust valves. However, many radial turbines are designed and tested under steady-state conditions without taking into account these unsteady exhaust flows. In order to seek the optimal aerodynamic design of a radial flow turbine (RFT) under pulsating flow conditions, the present research utilizes a numerical simulation approach to optimize the blade shape of a small-scale mixed flow turbine (MFT) under 50 Hz pulses. This corresponds to a four-stroke, three-cylinder engine rotating at 2000 rpm. In order to understand how a less computationally intensive, steady-state optimization compares, the blade shape was also optimized using the peak power point of the pulse. Three turbine features were modified during the optimization process, including blade cone angle, blade axial location, and blade camber angles. The optimization was carried out using a computational fluid dynamics (CFD)–genetic algorithm (GA) coupled approach, targeting at maximizing both energy-weighted efficiency and energy output during a predefined pulse period. To ensure that the new design maintains a similar matching to the engine, the maximum deviation of turbine swallowing capacity is controlled to within ±5% of the baseline for all new blade designs. The design that achieves the maximum pulse cycle-averaged efficiency was produced from unsteady optimization, with a performance benefit of 0.66%. The unsteady optimization also produced a blade shape that delivers the maximum energy output, with an improvement of 5.42%.


2014 ◽  
Vol 24 (1-2) ◽  
pp. 229-237 ◽  
Author(s):  
AKMS Islam ◽  
MM Hossain ◽  
MA Saleque ◽  
MA Rabbani ◽  
RI Sarker

Unpuddled transplanting of rice is gaining attention in Bagnaldesh agriculture. Energy budget is essential for efficient management of the resources in agricultural production. The energy balance under different minimum tillage practices in rice cultivation was assessed during 2009-11 by comparing the parameters: energy input, energy output, energy productivity and energy output:input ratio. Energy input in CT, SPWT, BP and ST were 25.50, 23.15, 20.48 and 20.49 GJ ha-1, respectively in rice cultivation. Maximum energy was consumed for chemical fertilizers. Tillage energy ranked second in conventional tillage and ranked fourth in minimum tillage options. Energy output was insignificant due to insignificant yield difference. Unpuddled transplanting (BP and ST) showed 8-12% increase in energy productivity and 22-24% increase in energy output:input ratio. However, from the energy saving point of view, unpuddled transplanting may be considered better options depending on the resources availability in rice cultivation.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19176 Progress. Agric. 24(1&2): 229 - 237, 2013


1965 ◽  
Vol 180 (1) ◽  
pp. 777-789
Author(s):  
I. Marland ◽  
A. J. Organ ◽  
S. A. Tobias

As a first stage in the development of a large, double-acting, petrol combustion actuated, high energy-rate forming machine, a compressed-air driven device was designed and constructed. This was intended to be a research vehicle for establishing general design principles, particularly as far as the structural configurations and the method of platen synchronization were concerned. The characteristic design features of this machine are discussed and an appraisal of the design is given. Experiments were carried out with the aim of (1) determining the net energy output of the machine and (2) finding the maximum platen approach velocity for a range of values of the initial charge pressure. For the determination of the energy output of the machine, calibrated crush-gauges were used, the results being cross-checked by measuring the maximum relative velocity between the platens, and from this and the weight of the moving masses finding the maximum kinetic energy. For the determination of the maximum platen approach velocity, electric velocity transducers were used, the results being checked with the aid of a high-speed ciné camera. The maximum energy output of the machine was found to be 75 000 ft lb, which was attained with a maximum impact velocity of 80 ft/s, as aimed at in the design of the machine. Some typical examples of hot forgings produced with the machine are also presented.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander G. Kvashnin ◽  
Dmitry G. Kvashnin ◽  
Artem R. Oganov

Abstract We have predicted stable reconstructions of the (100) and (111) surfaces of NaCl using the global optimization algorithm USPEX. Several new reconstructions, together with the previously reported ones, are found. For the cleaved bare (100) surface, pure Na and pure Cl are the only stable surface phases. Our study of the (111) surface shows that a newly predicted Na3Cl-(1 × 1) reconstruction is thermodynamically stable in a wide range of chlorine chemical potentials. It has a sawtooth-like profile where each facet reproduces the (100) surface of rock-salt NaCl, hinting on the preferred growth of the (100) surface. We used Bader charge analysis to explain the preferable formation of this sawtooth-like Na3Cl-(1 × 1) reconstruction of the (111) surface of NaCl. We find that at a very high chemical potential of Na, the polar (and normally absent) (111) surface becomes part of the equilibrium crystal morphology. At both very high and very low chemical potentials of Cl, we predict a large decrease of surface energy and fracture toughness (the Rehbinder effect).


2016 ◽  
Vol 818 ◽  
pp. 213-218 ◽  
Author(s):  
Burhan Muhammad ◽  
Jin Oh Seung ◽  
Kim Choon Ng ◽  
Wongee Chun

Solar cell is the most cost effective and simple device to harvest solar energy as compared to other systems. Many types of single junction solar cell are available in market but their main problem is low efficiency. This paper focuses on the performance investigation of high efficiency multijunction solar cell using two axis solar tracker. High solar concentration is needed for multijunction solar cell with accurate solar tracking to get maximum energy output. Solar tracker is based upon the astronomical algorithm of solar tracking. Tracking System consists of GPS module, AVR microcontroller, stepper motors with drive modules and some other accessories. The tracking system takes geographical location data from GPS to calculate sun position for tracking.


Sign in / Sign up

Export Citation Format

Share Document