Thermoelectric generator with a high integration density for portable and wearable self-powered electronic devices

2021 ◽  
Vol 245 ◽  
pp. 114571
Author(s):  
Nguyen Van Toan ◽  
Truong Thi Kim Tuoi ◽  
Nguyen Van Hieu ◽  
Takahito Ono
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Peng Huang ◽  
Dan-Liang Wen ◽  
Yu Qiu ◽  
Ming-Hong Yang ◽  
Cheng Tu ◽  
...  

In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 234 ◽  
Author(s):  
Urooj Kamran ◽  
Young-Jung Heo ◽  
Ji Won Lee ◽  
Soo-Jin Park

Carbon-based materials, including graphene, single walled carbon nanotubes (SWCNTs), and multi walled carbon nanotubes (MWCNTs), are very promising materials for developing future-generation electronic devices. Their efficient physical, chemical, and electrical properties, such as high conductivity, efficient thermal and electrochemical stability, and high specific surface area, enable them to fulfill the requirements of modern electronic industries. In this review article, we discuss the synthetic methods of different functionalized carbon materials based on graphene oxide (GO), SWCNTs, MWCNTs, carbon fibers (CFs), and activated carbon (AC). Furthermore, we highlight the recent developments and applications of functionalized carbon materials in energy storage devices (supercapacitors), inkjet printing appliances, self-powered automatic sensing devices (biosensors, gas sensors, pressure sensors), and stretchable/flexible wearable electronic devices.


Nano Research ◽  
2021 ◽  
Author(s):  
Peidi Zhou ◽  
Jian Lin ◽  
Wei Zhang ◽  
Zhiling Luo ◽  
Luzhuo Chen

Author(s):  
Carmel Majidi ◽  
Mikko Haataja ◽  
David J. Srolovitz

The development of self-powered electronic devices is essential for emerging technologies such as wireless sensor networks, wearable electronics, and microrobotics. Of particular interest is the rapidly growing field of piezoelectric energy harvesting (PEH), in which mechanical strains are converted to electricity. Recently, PEH has been demonstrated by brushing an array of piezoelectric nanowires against a nanostructured surface. The piezoelectric nanobrush generator can be limited to sub-micron dimensions and thus allows for a vast reduction in the size of self-powered devices. Moreover, energy harvesting is controlled through contact between the nanowire tips and nanostructured surface, which broadens the design space to a wealth of innovations in tribology. Here we propose design criteria based on principles of contact mechanics, elastic rod theory, and continuum piezoelasticity.


2014 ◽  
Vol 663 ◽  
pp. 299-303 ◽  
Author(s):  
Ubaidillah ◽  
Suyitno ◽  
Imam Ali ◽  
Eko Prasetya Budiana ◽  
Wibawa Endra Juwana

Thermoelectric generator is solid-state device which convert temperature difference, ∆T into electrical energy based on Seebeck effect phenomenon. The device has been widely used in self-powered system applications. This paper focuses on presentation of methodology for characterizing thermoelectric generators. The measurement of its behavior is performed by varying load resistances. A standard module of thermoelectric generator (TEC1-12710) is used in examination and an instrument setup consists of controllable heat source, controllable cooler, personal computer, data logger MCC DAQ USB-1208LS equipped with two sets of K-type thermocouples. The experiment is performed by measuring output voltage and output current in 4 values of temperature gradient by applying 10 values of resistive loads connected to the thermoelectric output wires. The common parameters studied in this research are output voltage, current and power. Generally, the relationship between parameters agrees with the basic theory and the procedure can be adopted for characterizing other type of thermoelectric generator.


Author(s):  
Shaoji Wu ◽  
Li Tang ◽  
Yue Xu ◽  
Guangcong Tang ◽  
Bailin Dai ◽  
...  

At present, hydrogel flexible sensors have attracted wide attention in the field of wearable electronic devices. However, hydrogel flexible sensors need external solid state power supply to output stable signals....


2020 ◽  
Vol 18 (1) ◽  
pp. 7-21 ◽  
Author(s):  
Qiang Zheng ◽  
Qizhu Tang ◽  
Zhong Lin Wang ◽  
Zhou Li

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 564 ◽  
Author(s):  
Hao Zhu ◽  
Qiliang Li

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress in speed and integration density [...]


Sign in / Sign up

Export Citation Format

Share Document